
Genady P. Cherepanov

Invariant 
Integrals in 
Physics



Invariant Integrals in Physics



Genady P. Cherepanov

Invariant Integrals in Physics

123



Genady P. Cherepanov
Miami, FL, USA

ISBN 978-3-030-28336-0 ISBN 978-3-030-28337-7 (eBook)
https://doi.org/10.1007/978-3-030-28337-7

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-28337-7


Preface

In this book, basic laws of physics are derived from the law of energy conservation
using invariant or path-independent integrals. This new approach allowed the
present author to also discover some new laws generalizing Archimedes’ buoyancy
principle, Coulomb’s Law of rolling, Newton’s Law of gravity, Coulomb’s Law for
electric charges, and some others.

The book presents these findings; it is meant to be used in all walks of life and at
school—wherever physics is necessary. For those who seek new opportunities for
discovering new laws, it may be of a major interest. Some minimal mathematical
knowledge, including the divergence theorem, elementary tensor skills, and ana-
lytical functions, would be helpful. However, the promise of discoveries much
exceed these technical difficulties.

I express a deep gratitude to my son Yury G. Cherepanov who has a MS in math
and a MA in business; he was an invaluable help in the preparation of this book.

Miami, USA Genady P. Cherepanov
June 2019 Honorary Life Member of the New York

Academy of Sciences elected on December 8, 1976
together with Linus C. Pauling
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Introduction

The value of an invariant integral does not depend on its path, surface, or volume of
integration which can thus be deformed without changing this value. Invariant
integrals express the laws of conservation of energy, mass, or momentum. Some
path-independent contour integrals first appeared still in the eighteenth century in
the works of Euler and Bernoulli and later played the main role in the mathematical
theory of complex variables created by Cauchy, Riemann, and others. This theory
found many applications to two-dimensional problems of fluid dynamics and
elasticity. Recently, it appeared that invariant integrals in any dimensions can be
used as the unique tool for deriving classical laws of physics and even for dis-
covering some new laws.

The term “physics” comes from the ancient Greek “Utrϊjη” which is the name
of the most known book by Aristotle (384–322 BC), approximately translated as
“nature.” Today, physics is the main science that deals with energy, force, and matter
of nature. Archimedes, Galileo Galilei, Isaac Newton, Gottfried Leibniz, Robert
Hook, Leonhard Euler, Charles Coulomb, Georg Riemann, James Maxwell, Hendrik
Lorentz, Jules Poincare, Albert Einstein, Nikolai Joukowski, John Eshelby, George
Irwin, and others left their names on the main physical laws of nature. Some laws
of these men are mentioned in Chap. 1, although they are set forth sometimes very
differently from the traditional approach. In the rest of the book, there are no
equations that would not belong to the present author, including the term “invariant
integral” which was introduced about fifty years ago.

In this book, all physical laws are calculated from some invariant integrals which
express the conservation of energy,mass, ormomentum. This new approach allows us
to unify the laws of theoretical physics, to simplify their derivation, and to discover
some novel or more universal laws. For example, Newton’s Law of gravity is gen-
eralized in order to take into account cosmic forces of repulsion and describe the
growth and shape of the universe. Archimedes’ principle of buoyancy is modified to
take into account the surface tension of liquids. Even Coulomb’s Laws describing the
interaction of electric charges and the rolling friction are substantially repaired and
generalized. For example, it appeared that relativistic electrons can interact in a weird
way, namely, by attracting one another and coalescing into dense packs.
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Moreover, invariant integrals provide an alternative to differential equations
of the mathematical physics because they suggest a straightforward approach to the
solution of boundary value problems. However, the corresponding numerical
procedures are outside the framework of this book where one can find only
exact analytical solutions. Physics today is still imperfect and sometimes
self-contradicting, though. We say “vacuum” is a sort of nothing but it is in vacuum
where some quite material and well-measured things like electromagnetic waves
exist. Gravitation is an even more mysterious property of matter. Opposite to the
general theory of relativity but based on numerous probes of the WMAP and Planck
satellite missions over many years, the universe is flat which justifies the new
approach to cosmology treated in this book.

The book can be a text for the special course “Invariant Integrals in Physics.” It
can also serve as a complementary textbook for graduate students specializing in
physics and its applications.

viii Introduction
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Chapter 1
The Laws of Classical Physics

Abstract This chapter serves to introduce and discuss the method of invariant inte-
grals using some well-known laws of physics. This method is applied to derive
and calculate the buoyancy principle (Archimedes), the force of inertia and motion
laws (Newton and Galileo), Einstein’s equation connecting mass and energy, the
law of gravity (Newton), the lift force of wings and the theory of flight (Kutta and
Joukowski), the driving force of dislocations and foreign atoms in elastic materi-
als (Peach, Koehler, and Eshelby), and Coulomb’s Law of the interaction force of
electric charges. This chapter is for everybody interested in physics.

The chapter reviews some basic laws of classical physics and derives them from
invariant integrals.

1.1 Archimedes’ Buoyancy Principle

Archimedes (287–212 BC) living in Sicily can be called the Grandfather of Science
because he invented screw engine, spirals, buoyancy law, and calculus (by integrating
area under parabola) among many other discoveries. Navigation, shipbuilding and
aerostation are based on his laws. It was an epoch of bloody struggle between the
arising Rome and powerful Carthage, with Sicily being between the jaws of both;
the war tremendously stimulated Archimedes’ inventions.

Let us consider the statics of a heavy fluid like water in a lake, sea, or anywhere
else. The state of the fluid is determined by pressure which is a linear function of
depth. Suppose a body of volume V is submerged in the fluid so that every point of
the surface is under pressure of the fluid. The components of the resultant force the
fluid acts upon the body are:

Fi =
∫

S

pnidS (i = 1, 2, 3) (1.1.1)
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G. P. Cherepanov, Invariant Integrals in Physics,
https://doi.org/10.1007/978-3-030-28337-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28337-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-28337-7_1


2 1 The Laws of Classical Physics

Here p is the pressure of the fluid on any closed surface S embracing the body;
and ni are the components of the unit vector normal to this surface. This force called
the buoyancy force is equal to the weight of the body if it rests.

Now, let us remove the body and fill up its volume by the same fluid so that the
pressure field outside volume V remains the same. Applying the divergence theorem
to the integral of Eq. (1.1.1) provides

Fi =
∫

V

p,i dV = ρVgi (i = 1, 2, 3) (1.1.2)

Here p,i = ∂p/∂xi = ρgi ; ρ is the fluid density; gi are the components of the
gravity acceleration vector; and x1, x2 and x3 are the Cartesian coordinates.

If the x3-axis is chosen along the gravity force, then, from Eq. (1.1.2), we have

F3 = −ρgV, F1 = F2 = 0. (1.1.3)

Here g is the value of the gravity acceleration directed oppositely to the x3− axis
so that p,1 = p,2 = 0, and p,3 = −ρg.

Further, let us assume that the original body of volume V does not produce any
perturbations of the fluid pressure. Then, based on Eqs. (1.1.1)–(1.1.3), we conclude
that the buoyancy force upon the original body is equal to the weight of the fluid in
the volume of this body. It is the famous Archimedes’ principle. The buoyancy force
does not depend on what is inside the body. It does not depend on the shape/surface
of any body of the same volume. Therefore, the integral of Eq. (1.1.1) can be called
invariant or independent of its surface of integration if the surface covers the same
volume.

And so, this principle is based on the assumption that the body produces no
perturbations in the pressure field outside itself. If this assumption holds, we can
also use this principle in the case of partial submergence of the body of volume V .
As an example, consider the problem of iceberg floating in the sea. In this case, using
Archimedes’ buoyancy principle, it is easy to find that

Vw = W − gVρa

g(ρw − ρa)
, Va = −W − gVρw

g(ρw − ρa)
. (1.1.4)

Here W and V are the total weight and volume of the iceberg, respectively;
ρwand ρa are the densities of water and air; and Vw and Va are the volumes of the
iceberg submerged in water and air.

If the density of ice is equal to ρi , then from Eq. (1.1.4), it follows that

Vw/Va = (ρi − ρa)/(ρw − ρi ). (1.1.5)

For example, Vw/Va = 10 if the density of water is ten percent more than of ice.
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In Chap. 2, we derive a more general law when the body submerged in a fluid
changes its local pressure due to surface tension. Also, we consider the buoyancy
force of submarines on the bottom, the floating of continents, as well as the buoyancy
force in fluidized beds and in extremely viscous media.

1.2 The Law of Motion

Galileo Galilei (1564–1642) called the Father of Physics established the main princi-
ple of motion which says that a body moves along a straight line at a constant speed
if no forces act upon the body. From this principle, it follows that any acceleration
of its rectilinear motion or any curvature of its path is caused by a force. Galileo dis-
covered the laws of falling bodies and the parabolic motion of projectiles; however,
he became famous for his stubborn support of the Copernican theory in astronomy.
It was the Enlightenment epoch, or the Age of Reason, in the history of Europe and
the world.

Let us consider the rectilinear motion of an undeformable body of volume V and
surface S at velocity v. We introduce the notions of the force of inertia and of the
specific kinetic energy of the body using the following two postulates [3]:

(i) The force of inertia of a body is equal to the balance of specific kinetic energy
on the body surface

Fi =
∫

S

K (v̄)nidS (i = 1, 2, 3); (1.2.1)

(ii) The differential of specific kinetic energy equals the flow of the differential of
flow of specific kinetic energy

dK = v̄d(v̄K ). (1.2.2)

Here K = K (v̄) is the specific kinetic energy of the body per unit volume; Fi
are the components of the force of inertia; S is a closed surface embracing the body;
ni are the components of the outer unit vector which is normal to surface S; and
v̄ = v/c is the dimensionless velocity of the body where c is a special speed which
physical meaning is found below in this section.

The integral in Eq. (1.2.1) is similar to the invariant integral of Eq. (1.1.1), with the
specifickinetic energyplaying the role of pressure on thebody surface inArchimedes’
principle. The integral in Eq. (1.2.1) is also called invariant because it does not depend
on the shape of integration surface S embracing the body volume. The postulate of
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Eq. (1.2.2) provides the definition of the notion of the specific kinetic energy of the
body.

Let us re-write the condition equation in Eq. (1.2.2) as follows:

1

v

dK

dv
= 1

c2
d(vK )

dv
or

dK

dv
= vK

c2 − v2
. (1.2.3)

The solution of Eq. (1.2.3) is:

K = E√
1 − v2

c2

. (1.2.4)

Here E is a constant.
From Eq. (1.2.4), it follows that any velocity of matter cannot exceed the value

of c. Hence, we conclude that c is the speed of light in vacuum because it is the
maximum known velocity of propagation of any physical field.

Based on Eq. (1.2.4), function K (v) can be represented by the following series

K = E

(
1 + 1

2

v2

c2
+ 3

8

v4

c4
+ 5

16

v6

c6
+ . . .

)
. (1.2.5)

Now, let us require that our definition of specific kinetic energy should coincide
with the classic definition of kinetic energy for small v/c as K0 = ρ0v

2/2, where ρ0

is the specific mass, or density, of the body at small velocities.
From here and from Eq. (1.2.5), it follows that

E = ρ0c
2. (1.2.6)

From this theory and Eqs. (1.2.5) and (1.2.6), it follows also that any mass m0

carries, in and by itself, a “silent” energy E = m0c2 independent of its velocity. This
is Einstein’s equation, the most famous and important law of physics. The value of
E , the energy of mass, is called the nuclear energy. Some ways of liberation of this
energy led to the invention of nuclear weapons and power stations that have already
transformed the life on the Earth and may as well determine the future life of the
man. Einstein’s equation has established a new physical entity, “the mass–energy.”
Equations (1.2.4)–(1.2.6) are usually derived from the special theory of relativity
elaborated by Lorentz, Einstein, and Poincare in the Minkowski “space–time.”

For the rectilinear motion of a body along the x1-axis, using the divergence theo-
rem and Eqs. (1.2.1)–(1.2.6), we get:

K,1 = dK

dx1
= dK

dv

dv

dx1
= dK

dv

dv

dt

1

v
= 1

c2
d

dt
(vK ); (1.2.7)
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F1 =
∫

S

Kn1dS =
∫

V

K,1dV =
∫

V

1

v

dK

dv

dv

dt
dV = d

dt

⎛
⎜⎜⎝ m0v√

1 − v2

c2

⎞
⎟⎟⎠. (1.2.8)

Here t is time; and m0 = ρ0V and F2 = F3 = 0. When v = const, then F1 = 0
in accordance with the principle of Galileo Galilei.

And so, from Eq. (1.2.8), it follows that the law of the rectilinear motion has the
following shape:

d

dt

⎛
⎜⎜⎝ m0v√

1 − v2

c2

⎞
⎟⎟⎠ = F1 for any v < c; (1.2.9)

d

dt
(m0v) = F1 for small v � c. (1.2.10)

The law of Eq. (1.2.10) suggested by Isaac Newton (1642–1727) is the famous
Newton’s Law of motion, and force F1 is called the force of inertia. In his celebrated
treatisePrincipia, Newton treated this approximate equation as the eternal, universal,
God-granted law, Lord’s proposition in his terms. Indeed, it worked well for the
motion of both planets and small fluffs in Torricelli’s vacuum tube—and it stood
unshakable for two centuries.

Still earlier, Gottfried Leibniz (1646–1716) suggested the law dK0/dt = vF1

which is equivalent to Newton’s Law (1.2.10); Leibniz called the kinetic energy

K0 = 1

2
m0v

2 the “live force.” However, as a result of some bitter controversy

powerful Sir Isaac put Leibniz down in obscurity and most of Leibniz discoveries
became knownmuch later. Even the grave of Leibniz buried by his servant alone was
unknown and occasionally found many years later after his death.

For arbitrary motion along any curvilinear path, the law of motion is written as:

d

dt

⎛
⎜⎜⎝ m0�v√

1 − v2

c2

⎞
⎟⎟⎠ = �F

(
v2 = |�v|2 < c2

)
, (1.2.11)

d

dt
(m0�v) = �F

(
v2 = |�v|2 � c2

)
. (1.2.12)

Here �v and �F are the vectors of velocity and force. As a reminder, these laws of
motion, Eqs. (1.2.11) and (1.2.12), are here derived from the invariant integral of
Eq. (1.2.1). Equations (1.2.11) are the basic equations of the relativistic mechanics.
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Particularly, from Eq. (1.2.12), it follows also that in the case of the uniform,
circular motion of a mass around a center the mass is subject to the centrifugal force
of inertia m0v

2r−1 (where r is the radius of rotation).
It should be noted that all of these equations including Eqs. (1.2.9)–(1.2.12) are

written here using Leibniz’s calculus. Newton never recognized it—he formulated
the laws in his system of “fluxions,” which has never been used and has been since
forgotten.

In Chap. 10, some unusual properties of relativistic electron beams are studied by
using Eqs. (1.2.11).

1.3 The Gravitation

Based on the works of Nicolaus Copernicus (1473–1543) and Tycho Brahe
(1546–1601) in astronomy, Brahe’s student Johannes Kepler (1571–1630) discov-
ered that planets move around the Sun in one plane along some elliptical, close to
circular, orbits so that the square of period of each revolution is directly proportional
to the cube of the mean radius of the orbit. In 1672, Robert Hooke (1635–1703)
who was the curator of the just established Royal Society in London proposed the
inverse-square law of gravitation as an evident consequence of Kepler’s laws based
on the balance between the gravity and centripetal force of circular motion. In 1679,
he assigned Isaac Newton to prove this law for elliptical orbits of planets.

It is noteworthy that Hooke and Newton were never-married Anglican monks
who from 1689 to 1703 served to King William III, the former Prince of Orange
of Holland, who occupied England in 1689. At that time, Holland was the mighty
world power with many colonies in North America. For some time, Newton served
as a spy for this king and saved king’s treasury from counterfeiters. Despite several
years spent in Bedlam, he became the Master of the Royal Mint for providing this
important service to the Crown; he kept this office until his death. As the President
of the Royal Society after Hooke died, Newton was second to none by his power.

In 1687, Newton published in Principia the proof of the inverse-square law of
gravitation using Kepler’s laws for elliptical orbits of planets. In 1725, after more
than twenty years of the bitter priority dispute since Hooke’s death, the meeting of
the Royal Society declared its President Sir Isaac the author of the gravitation law:

F = G
mM

R2
. (1.3.1)

Here F is the gravity of masses m and M ; R is the distance between them; and
G is the gravitational constant. It is only in 1805 that Henry Cavendish (1731–1810)
determined its value (G ≈ 6.67 × 10−11 Nm2 kg−2).

Below we provide another approach to the theory of gravitation, in which New-
ton’s Law (1.3.1) will be derived. Let us introduce the invariant integral of the grav-
itational field as follows [1–4]:
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Fk = 1

4πG

∫

S

(
1

2
ϕ,iϕ,i nk − ϕ,iϕ,kni

)
dS (i, k = 1, 2, 3) (1.3.2)

Here ϕ = ϕ(x1, x2, x3) is the potential of the gravitational field; the comma in
ϕ,1, ϕ,2 and ϕ,3 means the derivatives over x1, x2 and x3; and S is any closed surface
of integration. Here and everywhere below the repeated indices mean summation.
As we show further, Fk are the components of the resultant force of gravitation of
all gravitational masses inside S. In particular, Fk = 0 if there are no gravitational
masses inside S which means vacuum inside S.

Using the divergence theorem, we transform the integral in Eq. (1.3.2) as follows:
∫

S

(
1

2
ϕ,iϕ,i nk − ϕ,iϕ,kni

)
dS =

∫

V

{
1

2

(
ϕ,iϕ,i

)
,k − (

ϕ,iϕ,k
)
,i

}
dV

=
∫

V

(
ϕ,ikϕ,i − ϕ,iϕ,ki − ϕ,i iϕ,k

)
dV = −

∫

V

ϕ,i iϕ,kdV .

(1.3.3)

Here V is the volume inside S.
FromEqs. (1.3.2) and (1.3.3), it follows that in vacuumpotentialϕ meetsLaplace’s

equation

ϕ,i i = 0. (1.3.4)

In spherical coordinates r, θ, andψ , Laplace’s equation is written as follows:

ϕ,i i = ∂2ϕ

∂r2
+ 2

r

∂ϕ

∂r
+ 1

r2 sin2 θ

∂2ϕ

∂ψ2
+ 1

r2
∂2ϕ

∂θ2
+ 1

r2
cot θ

∂ϕ

∂θ
= 0. (1.3.5)

Let a point source of the gravitational field be at the origin of coordinates. The
simplest singular solution of Laplace’s equation can be written as

ϕ = −G
M

r
− gkxk

(
r2 = xkxk

)
(1.3.6)

Here x1, x2, and x3 are the Cartesian rectangular coordinates, and M and gk are
some constants.

By differentiating Eq. (1.3.6) on xk once, twice, and many times, we can get the
whole set of solutions of Laplace’s equation singular at the origin of coordinates.

Let this point source of Eq. (1.3.6) be inside the integration surface S. From
Eq. (1.3.6), we have

ϕ,k = −gk + GMxk/r
3. (1.3.7)
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And so, gk is the intensity or tension of the unperturbed field of gravitation at the
origin of coordinates.

Now, substitute the value of ϕ,k in Eq. (1.3.1) by that of Eq. (1.3.7) and calculate
the value of force F1 using as S the surface of the narrow parallelepiped with faces
along x1 = ±L; x2 = ±L; and x3 = ±δ, where δ/L → 0 and L → 0 :

F1 = 1

2πG
lim

+L∫

−L

+L∫

−L

ϕ,1ϕ,3dx1dx2

= 1

2πG
lim

+L∫

−L

+L∫

−L

(
g1

GM

r3
δ + g3

GM

r3
x1

)
dx1dx2

= g1M

2π
lim

+L∫

−L

+L∫

−L

δdx1dx2(
x21 + x22 + δ2

)3/2 = g1M

2π

+∞∫

−∞

+∞∫

−∞

dt1dt2(
1 + t21 + t22

)3/2 . (1.3.8)

In cylindrical coordinates R and ϑ so that R2 = t21 + t22 and dt1dt2 = RdRdϑ ,
we get

F1 = g1M

2π

2π∫

0

dϑ

∞∫

0

RdR(
1 + R2

)3/2 = 1

2
g1M

∞∫

1

ds

s3/2
= g1M (1.3.9)

And so, in the general case, we have

Fk = Mgk (i = 1, 2, 3) (1.3.10)

To clarify the physical meaning of M , let us calculate the interaction force F1 of
a source M at point (0, 0, 0) upon another source m at point (R, 0, 0) in the infinite
vacuum space. According to Eq. (1.3.6), the sourceM produces the gravitational field
of intensity ϕ,1 = −g1 = GM/R2 at point (R, 0, 0). Hence, based on Eq. (1.3.9),
the force acting upon the source m is equal to

F1 = −GmMR−2 (1.3.11)

This is Newton’s Law of Eq. (1.3.1); hence,m andM are themasses of the relative
sources.

Suppose a heavy point mass m falls freely down to the Earth surface under the
action of gravity so that the drag of air can be ignored. In this case, based on
Eqs. (1.3.11) and (1.2.12), the free fall acceleration of the mass because of iner-
tial force is equal to

g = GM/R2. (1.3.12)
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HereM and R are the mass and radius of the Earth. This verifiable relationship for
the chosen value of the gravitational constant proves the identity of the gravitational
and inertial mass.

And so, the theory of the Newtonian gravitational field is done here using the
invariant integral of Eq. (1.3.2). From the viewpoint of the energy conservation law,
the first term in it is the specific potential energy of the field and the second term
is the specific work of the field tensions. From the viewpoint of the momentum
conservation law, these terms can be treated as the specific momentum and stress
tensor of the field.

In Chap. 11, Newton’s Law is generalized by account of the cosmic forces of
repulsion of the matter which allows one to look into the history of the universe, to
calculate its age, and to solve the problems of Dark Energy, Dark Matter, and some
other problems of cosmology.

1.4 The Flight

Let us study the motion of bodies in the air which, at low-subsonic velocities, can be
considered as an incompressible, inviscid fluid.

Non-viscous fluids. For the stationary flow of an incompressible, inviscid fluid
around a body, it is natural to introduce the invariant integral as follows [1–4]:

Fk =
∫

S

(pnk + ρvi nivk)dS. (i, k = 1, 2, 3) (1.4.1)

Here p and vi are the pressure and velocity components of the fluid; ρ = const is
the fluid density; S is a closed surface around the body; Fk are the components of the
resultant force acting upon the body; and ni are the components of the unit normal
vector.

The first term in Eq. (1.4.1) coincides with that in Eq. (1.1.1) of Archimedes’
principle for the static problem, and the second term takes account of the motion of
the fluid. The sum of both terms provides the flow of the specific fluid momentum
through surface S.

By applying the divergence theorem to the integral in Eq. (1.4.1), we get

Fk =
∫

V

(
p,k + ρvivk,i + ρvi,ivk

)
dV (i, k = 1, 2, 3) (1.4.2)

Since vi,i = 0 for incompressible fluids and volume V inside surface S is arbitrary,
from Eq. (1.4.2), it follows that

p,k + ρvivk,i = 0 if Fk = 0 (i, k = 1, 2, 3). (1.4.3)
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These are Euler’s equations and d Alembert’s paradox, according to which the
drag force on a body moving in an inviscid fluid is equal to zero. And so, the force
upon the body, lift, and/or drag can result only from some flow singularities where
Euler’s equations are not valid. Typically, these are vortices produced by the moving
body in the fluid.

From Eqs. (1.4.3), it follows that for irrotational flows (when vi,k = vk,i ), we get

2p + ρvivi = const; vi = ϕ,i and ϕ,i i = 0 (i = 1, 2, 3) (1.4.4)

Here ϕ is the flow potential. The first equation in Eqs. (1.4.4) is the famous
Bernoulli’s equation.

Leonhard Euler (1709–1784), a Swiss-Russian genius, can be considered the
Father of Hydrodynamics. He was born in Switzerland but took Russia’s citizenship
where he worked most of his life. He is believed to be the most prolific scientist of all
times. It took more than hundred years after his death that the Russian Academy of
Sciences could have published most of his works. Euler derived the basic equations
of hydrodynamics long before its practical applications. He also solved the basic
differential equations and put the ground of the theory of functions of a complex
variable. It is interesting that Euler like the ancient philosopher Plato, but distinct
from Galileo and Newton, believed in the science of pure reason—the only beauty
and logic of mind were of interest for him. Paradoxically, his works were later used
in practice more than anyone else’s.

Because of broad industrial applications of various blades, wings, and aerofoils,
the hydrodynamics of two-dimensional flows when v3 = 0 is of special interest. For
these flows, from Eqs. (1.4.4), we get

v1 − iv2 = dw

dz
, z = x1 + i x2, 2p + ρ

∣∣∣∣dwdz
∣∣∣∣
2

= const. (1.4.5)

Here the complex potential w(z) is an analytical function of the complex variable
z to be found.

Let us calculate the force upon an arbitrary cylinder of contour C in the cross
section placed in the uniform stream v1 = U, v2 = 0. This force per unit length of
the cylinder is given by Eq. (1.4.1) where vi ni = 0 on C so that we get

F1 − i F2 = i
∮

C

pdz̄ = −1

2
iρ

∮

C

∣∣∣∣dwdz
∣∣∣∣
2

dz̄. (1.4.6)

Here we used Eq. (1.4.5) and the following identity (n1 − in2)dS = idz̄.
Since dw = dw̄ on C , we have

∣∣∣∣dwdz
∣∣∣∣
2

dz̄ = dw

dz

dw̄

dz̄
dz̄ =

(
dw

dz

)2

dz. (1.4.7)
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From Eqs. (1.4.6) and (1.4.7), we conclude that

F1 − i F2 = −1

2
iρ

∮

C

(
dw

dz

)2

dz. (1.4.8)

This is the well-known theorem of Blasius.
Since function (dw/dz)2 is analytical, we can arbitrarily deform contour C in the

flow domain with no change of the value of force F1 − i F2. Suppose for large z, the
function dw/dz behaves as follows:

dw

dz
= U + Q − iΓ

2π z
. (1.4.9)

Here v1 = U is the uniform flow velocity.
The second term describes the sum of the following two flows:

vr = Q

2πr
, vθ = 0; (1.4.10)

vr = 0, vθ = �

2πr
. (1.4.11)

Here r and θ are the polar coordinates, and vr and vθ are the corresponding
components of the fluid velocity.

From Eqs. (1.4.10) and (1.4.11), it follows that quantity Q is the volume source of
fluid per unit length and time, and Γ is the vortex circulation of the same dimension,
both characterizing the linear singularity of the flow at x1 = x2 = 0.

And so, the solution of Eqs. (1.4.9)–(1.4.11) describes the flow in the whole
unbounded space produced by the uniform flow and the vortex source at the coor-
dinate origin. This flow takes place very far from an arbitrary body streamlined by
fluid, if the body can produce this vortex and same fluid source.

Using the theorem of Blasius, Eq. (1.4.8), let us calculate the force of the uniform
flow v1 = U, v2 = 0 upon the body of any contour C , which produces vortex and
source at infinity described by Eq. (1.4.9). Since integral of Eq. (1.4.8) is invariant,
we can deform contour C into the circle of very large radius, z = R exp(iθ), where
R → ∞, and use Eq. (1.4.9). As a result of the simple calculation, we find

F1 − i F2 = ρU (Q − iΓ ). (1.4.12)

This is the force upon profile C produced by the fluid stream. The value of Q
has sense in the case of the boundary-layer suction used in some jets, but for most
practical applications, it can be put zero. Then, the formula of Eq. (1.4.12) takes the
classic shape

F1 + i F2 = iρΓ U (F1 = 0, F2 = ρΓU ) (1.4.13)
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And so, the lift is equal to the product of air density, flight speed, and circulation.
The lift law of Eq. (1.4.13) was derived by Kutta, Joukowski, and Chaplygin in the
early 1900s.

The lift of the aerofoil. The law of Eq. (1.4.13) seemed to have opened a way
to aviation. However, circulation Γ is a very capricious, shape-dependent property
of wing profiles. It was genius of Joukowski who designed special profiles with a
cusp serving as the trailing edge of the aerofoil. The value of circulation Γ is easily
projected in terms of this Joukowski profile shape, with the velocity at the cusp being
finite.

Let us calculate the value of circulation Γ for very thin flat wings with chord a
having the infinite span in the x3-direction to provide the two-dimensional flow. The
plane of the wing makes angle of attack α to the stream velocity. Let us designate
the characteristic points of the flow domain and profile as follows:

A : z = 1

2
aexp(π − α)i; B : z = 1

2
aexp(−iα);

C+ and C− : z = ±i0; 0 < α <
π

2

The rectilinear cut connecting points A and B in the complex plane z represents
the wing profile. Point B is called the trailing edge of the flow. The stagnation point
O of the flow where its velocity is zero is located on the frontal side of the wing
(Fig. 1.1).

At infinity, the air stream is described by the complex potential of Eq. (1.4.9)
where the values of Q and Γ should be found. To solve this problem, Joukowski
offered that the flow velocity should be finite at the trailing point B of the profile
and, hence, is directed under angle −α to the direction of the uniform flow. This
guess appeared to be valid for a broad range of cusped profiles known as Joukowski
aerofoils widely used in the construction of wings.

Let us provide the conformal mapping of the flow domain of the z− plane onto
the exterior of the unit circle of the parametric complex variable ξ as follows:

z = a

4
e−iα

(
ξ + 1

ξ

)
. (1.4.14)

Fig. 1.1 A thin plate streamlined by uniformflow. aThe physical z-plane.bThe parametric ξ-plane.
c The parametric ζ-plane
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The corresponding points A,C+, B,C−, O and A of the unit circle on the ξ−
plane passed clockwise are:

A := −1;C+ : ξ = +i; B : ξ = 1;C− : ξ = −i; O : ξ = exp(π + δ)i.

Here the value of δ has to be found.
The boundary condition equations on the ξ− plane are:

OA: arg
dw

dz
= π + α; AC+BC−O : arg

dw

dz
= α. (1.4.15)

Here arg means the argument of the corresponding function.
Now, let us provide the conformal mapping of the exterior of the unit circle of the

ξ -plane onto the upper half-plane of the ζ -plane as follows:

ζ = −D
(
1 + e−iδ

)ξ + eiδ

ξ + 1
. (1.4.16)

Here D is a positive real constant (O : ζ = 0; A : ζ = ±∞).
FromEq. (1.4.15), we get the following boundary value problem for the analytical

function ln
dw

dz
on the upper half-plane of the ζ− plane:

Im ln
dw

dz
= −π + α when Reζ > 0, Im ζ = 0;

Im ln
dw

dz
= α when Reζ < 0, Imζ = 0. (1.4.17)

The solution to this problem is evident:

ln
dw

dz
= ln ζ + i(−π + α) + C; (1.4.18)

C = lnU − i(−π + α) − ln
[−D

(
1 + e−iδ

)]
. (1.4.19)

Here the second equation follows from the condition at infinity, Eqs. (1.4.9),
(1.4.14), and (1.4.16), when z → ∞ and ξ → ∞. The imaginary part of Eq. (1.4.19)
should be equal to zero; from this, it follows that δ = 2α.

By taking into account Eqs. (1.4.14)–(1.4.19), we get the final solution as follows:

dw

dz
= U

ξ + e2iα

ξ + 1
, zeiα = a

4

(
ξ + 1

ξ

)
, (δ = 2α). (1.4.20)
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From here, using Eq. (1.4.9) at infinity, we get

Γ = −πaU sin α, Q = 0. (1.4.21)

Finally, from Eqs. (1.4.13) and (1.4.21), we find

F2 = πaρU 2 sin α, (F1 = 0). (1.4.22)

This is the lift per unit length of the infinite span of the wing.
For wings of finite spans, this solution is applicable in every wing cross section

if dΓ/dx3 � 1 so that the lift F of the wing based on Eq. (1.4.13) is very close to

F = ρU
∫

Γ (x3)dx3. (1.4.23)

For example, for swept wings with sweep angle ε when a = ±ε(s − x3), we get
the following equation for the lift

F = πρSU 2 sin α, (Γ = −π SU sin α). (1.4.24)

Here S = εs2 is the area of the triangular wing, and s is its span.
For small angles of attack, we have F = απρU 2S which was derived by Keldysh

and Sedov in 1939; see also Landau and Lifshitz [11, 12].
The simple result of Eq. (1.4.24) is a very good approximation for thin swept

wings of any cross-sectional shape, if its rear end is the trailing edge of the air
flow, that is, as soon as Joukowski pattern works. For too high angles of attack, it is
evidently violated and Eq. (1.4.24) becomes invalid. The critical angle of stall can
be estimated using the theory of boundary layer. The above theory is valid only for
small Mach numbers M = v/c � 1 (where c is the speed of sound in air).

We add two remarks about electromagnetic analogy and inductive drag.
Electromagnetic analogy. The Kutta–Joukowski equation F = ρVΓ for the lift

force is analogous to Ampere’s Law �F = �j × �B where �j = I
−→
dl for the force

�F exerted by the magnetic field �B on the electric current element I
−→
dl. Moreover,

the Kutta–Joukowski equation should be written in the form of the following vector
product: �F = −ρ �V × �Γ . Here �V is the velocity vector of the wing, and �Γ is the
circulation vector describing the vortex at infinity which produces the lift force (the
vectors − �V ,

−→
Γ and �F form the right-hand triad similarly to that of �i, �j and �k).

Inductive drag. For wings of finite span, it is necessary to keep in mind the effect
of secondary vortices arising in planes normal to the flight direction that creates the
force of inductive drag on the wing (the Prandtl effect).

In Chap. 5, the theory of flight based on the invariant integrals will be treated for
the subsonic flows (when Mach numbers are less than one).
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1.5 The Theory of Elasticity

Let us consider small deformations of the static elastic medium. In this case, the
equilibrium equations and the law of energy conservation can be written in the form
of the following invariant integrals [3, 5, 6]

Fi =
∫

S

σi j n jdS (i, j = 1, 2, 3); (1.5.1)

Γk =
∫

S

(
Unk − σi j n j ui,k

)
dS (i, j, k = 1, 2, 3). (1.5.2)

Here U is the elastic potential per unit volume; ui and σi j are the components of
the displacement vector and stress tensor; and n j are the components of the outer
unit vector normal to the closed surface S of integration.

The physical meaning of Fi and Γk is different. Vector (F1, F2, F3) represents the
resultant vector of external forces acting upon the body inside S. The values ofΓ1, Γ2

and Γ3 are equal to the change of the elastic energy of the system inside S resulted
from the motion of singular points, lines, or surfaces of the elastic field inside S (per
unit length along the x1, x2 and x3-axes).

Singular points of the elastic field are concentrated forces and moments of forces,
small foreign inclusions, tiny pores and cavities, and the like. Singular lines of the
elastic field are the fronts of cracks, dislocations, linear concentrated forces, and so
on. Singular surfaces are typically interfaces of different elastic materials or planar
pile-ups of dislocations in the elastic field.

Both Fk and Γk have the dimension of force. However, while the Fk are real
forces, the values of Γk usually called moving or driving forces are, as a matter of
fact, some specific losses of elastic energy of the body occurring only in the case if
the corresponding singularities move. To distinguish them from real forces, we will
call them the Γ -forces, with their dimension being like N · m per meter.

Invariant integrals of Eq. (1.5.2) were introduced by the great British scientist J. D.
Eshelby, and independently, as a particular case of more general invariant integrals,
by this author. It is interesting that Young’s modulus E was introduced still by young
Euler, but it and the equations of the theory of elasticity formulated later were named
after Young, Poisson, Cauchy, Navier, and others.

Let us apply the divergence theorem to Eqs. (1.5.1) and (1.5.2). As a result, we
get

Fi =
∫

V

σi j, jdV (i, j = 1, 2, 3); (1.5.3)

Γk =
∫

V

[
U,k − (

σi j ui,k
)
, j

]
dV (i, j, k = 1, 2, 3). (1.5.4)
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Here V is the volume inside S.
Since V is arbitrary, from Eqs. (1.5.3) and (1.5.4), it follows that:

σi j, j = ρFi , (1.5.5)

U,k = (
σi j ui,k

)
, j + ρΓ k = σi j, j ui,k + 1

2
σi j

(
ui, jk + u j,ik

) + ρΓ k . (1.5.6)

Here ρFk and ρΓ k are some volume densities of internal forces and energy in the
solid, when all external loads are zero. These values are of primary importance for
some “smart” materials, explosives, common metals after a hard work or treatment,
and so on.

We can write Eqs. (1.5.5) and (1.5.6) in terms of the strain tensor components

εi j = 1

2
(ui, j + u j,i ) as follows:

σi j, j = ρFi , U,k = σi jεi j,k + ρΓ k + ρFiui,k (i, j, k = 1, 2, 3). (1.5.7)

These are general equations of the theory of elasticity derived from the invariant
integrals of Eqs. (1.5.1) and (1.5.2). And so, the invariant integrals provide more
general approach to the theory of elasticity.

When U = U
(
εi j

)
and ρFk = ρΓ k = 0, we get the classical theory of elasticity:

σi j, j = 0, σi j = ∂U

∂εi j
. (1.5.8)

In the case when the elastic potential is a quadratic function of strains, these
equations are linear. They describe small deformations of most liquid and solid
materials within a specific time of relaxation.

Dislocations. All polycrystallinematerials likemetals have a lot of distortions and
defects in the structure. Most important are dislocations, inclusions, and fractures
created during the formation and prehistory of the material. The growth, motion, and
reproduction of these objects determine life and death of everything made of this
material.

Consider first an elementary screw dislocation, the simplest linear defect of a
lattice. Suppose that it has its front at x1 = x2 = 0,−∞ < x3 < +∞ and its
plane at x2 = 0, x1 < 0 so that its field of stresses and displacements in the infinite
homogenous isotropic space is:

u3 = b3
2π

θ, σ13 = −μb3
2πr

sin θ, σ23 = μb3
2πr

cos θ (−π < θ < π). (1.5.9)

Here b3 is the discontinuity of displacement u3 of this dislocation; μ is the shear
modulus; and rθ are the polar coordinates in plane Ox1x2 (the field is independent
of x3). All other stresses and displacements are zero.
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For the general field of the anti-plane strain, the following representation is valid
in homogeneous, isotropic, and linearly elastic materials [6]:

u3 = Im f (z), σ13 − iσ23 = −iμ f ′(z), z = x1 + i x2 = r exp(iθ). (1.5.10)

Here f (z) is an analytic function of z.
Let us study the motion of the screw dislocation of Eq. (1.5.9) subject to the

action of stress σ23 = σ 0
23 at infinity which adds the term σ 0

23x2/μ to the field of
displacement u3 in Eq. (1.5.9).

The dislocation-driving Γ − force Γ1 is determined by the invariant integral of
Eq. (1.5.2). In this case, using the invariance, this integral can be written as follows,
see Fig. 1.2,

Γ1 = lim
∮

σ23
∂u3
∂x1

n2dS = b3
2π

lim
∮ (

σ 0
23 + μb3

2πr
cos θ

)
∂θ

∂x1
n2dS = b3σ

0
23.

(1.5.11)

Here the integration path S is chosen along the contour of the longnarrow rectangle
x2 = ±δ, x1 = ±L passed clockwise when δ/L → 0 and L → 0 (where n2 =
1, dS = dx1 at x2 = +δ and n2 − −1, dS = −dx2 at x2 = −δ). It was taken into
account that along this path, we have:

π/2∫

π

cos θ

r(θ)
dθ +

−π∫

−π/2

cos θ

r(θ)
dθ = 0,

0∫

π/2

cos θ

r(ϑ)
dθ +

−π/2∫

0

cos θ

r(θ)
dθ = 0. (1.5.12)

For the same front and plane of the screw dislocation of Eq. (1.5.9), the elementary
edge dislocation having the displacement discontinuity [u1] = b1 and the elementary
wedge dislocation having the displacement discontinuity [u2] = b2 are possible. At
that, the proper field of stresses and displacements for the elementary edge dislocation
is given by the following equations [6]:

σ11 = −Cb1
2r

(sin 3θ + 3 sin θ), σ22 = Cb1
2r

(sin 3θ − sin θ), (1.5.13)

Fig. 1.2 Integration path S passed clockwise
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σ12 = Cb1
2r

(cos 3θ + cos θ), σ33 = −2νCb1
r

sin θ, (1.5.14)

u1 = b1[θ(κ + 1) + sin 2θ ]

2π(κ + 1)
, u2 = −b1[(κ − 1)lnr + cos 2θ]

2π(κ + 1)
. (1.5.15)

Here C = E

4π
(
1 − ν2

) , κ = 3 − 4ν, E is Young’s modulus, and ν is Poisson’s

ratio. All other stresses and strains are zero.
Using the invariant integral of Eq. (1.5.2) similarly to the previous case, we can

as well derive the force driving the elementary edge dislocation. In the general case,
the elementary dislocation is vector (b1, b2, b3), and the driving force, similar to
Eq. (1.5.11), is given by the following Peach–Koehler equation

Γ1 = b1σ
0
21 + b2σ

0
22 + b3σ

0
23. (1.5.16)

Here σ 0
21, σ

0
22 and σ 0

23 are the corresponding stresses at the location, but in
absence, of the dislocation.

The values of b1, b2 and b3 are specific for each crystal lattice; they have an order
of the atomic spacing of this lattice. For example, for cubic lattices, b1 = a (where
a is the atomic spacing). The dislocations of less value are impossible. And so, an
arbitrary dislocation represents a sum of elementary dislocations, with the driving
force being directly proportional to the sum.

To move a dislocation, the dislocation-driving Γ -force should achieve a certain
critical value of Γ1C which depends on the type of lattice and on concentration and
sort of foreign atoms of alloys. In pure metals, this critical value is very small for
edge and screw dislocations, which explains the high yielding and plasticity of pure
metals and, as a result, low strength of pure metals. Much greater critical value is
required to move a wedge dislocation in metals and crystals—usually, first comes a
rupture so that fracturing is more typical process in this case.

To make metals stronger, alloying and thermal treatment are specifically used to
achieve most favorable concentration and distribution of dislocations and alloying
atoms in the structure of the metal. The main objective of this treatment is to increase
the value of Γ1C which leads to the proportional increase of ultimate strength of the
product.

For elementary edge dislocations, we get

Γ1C = b1σS. (1.5.17)

Here σS is the Schmid stress which characterizes the lattice of the given metal.
Let us provide some simple examples of the interaction of edge dislocations.
Two edge dislocations on one sliding plane. Suppose two elementary edge dis-

locations are at points x1 = 0 and x1 = L of infinite space. The field of the first
one is given by Eqs. (1.5.13)–(1.5.15), and the field of the other one is provided by
same equations where the origin of polar coordinates is at the latter point. According
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to Eq. (1.5.14), stress σ12 produced by the second dislocation at x1 = 0 is equal to
−Cb1/L . Hence, based on Eq. (1.5.16), the driving force on the dislocation at x1 = 0
is:

Γ1 = −Cb21/L . (1.5.18)

The repelling force of same value acts upon the other dislocation, as well. The
position of both dislocations does not vary, if the value of the driving force is less

than Γ1C so that we have L > Cb21/
(π

2
− θ

)
1C
. However, if Γ1 > Γ1C so that

L < Cb21/Γ1C , the dislocations will move apart until the distance between both
achieves L = Cb21/Γ1C where Γ1 = Γ1C .

And so, the interaction Γ − force of two arbitrary edge dislocations is equal to

Γ1 = − Eq1q2
4πL

(
1 − ν2

) . (1.5.19)

Here q1 and q2 are the capacities of the dislocations expressed by some whole
numbers of b1. The interaction force is attractive for dislocations of different signs
and repulsive for dislocations of the same sign.

Point inclusions. Most important point defects in the crystal lattice are carbon
atoms of alloys in ferrousmetals, nitrogen and hydrogen atoms of impurities, alloying
ingredients, and others. They can move in the lattice under the action of stresses and
self-diffusion.

Let us calculate theΓ -force driving themost typical point defect B.A. Bilby called
the interstitial atom and J. D. Eshelby the center of dilatation. This defect placed at
the coordinate origin creates the proper spherically symmetrical elastic field:

usR = 1 + ν

2E

qa3

R2
; (q > 0)

σ s
R = −qa3

R3
, σ s

ψ = σ s
θ = qa3

2R3
.

(1.5.20)

Here R, ψ and θ are the spherical coordinates; usR and σ s
R, σ s

ψ, σ s
θ are the corre-

sponding displacement and stresses; a is the radius of the interstitial atom; and q is
its pressure on the elastic material. All other stresses and displacements are zero.

Let us apply some constant external stresses at infinity characterizing an arbitrary
compression–extension field. Using Eqs. (1.5.2), it can be shown in this case that the
force driving this inclusion is zero. The stresses, even, however, strong, cannot move
this inclusion.

Now, suppose that the outer elastic field has the following shape:

σ 0
33 = Ax1; u01 = −νA

2E

(
x21 − x22 + 1

ν
x23

)
;

u92 = −νA

E
x1x2; u03 = A

E
x1x3.

(1.5.21)
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Here A is a constant (e.g., directly proportional to the bendingmoment of a beam).
Let us calculate the Γ -force Γ1 of this field driving the inclusion of Eq. (1.5.20).

Because the integral of Eq. (1.5.2) is invariant with respect to the integration surface
S, we can take S as the parallelepiped formed by the faces x1 = ±L; x2 = ±L; and
x3 = ±δ when δ/L → 0, L → ∞, and δ → ∞.

In this case, the integrals of Eq. (1.5.2) are reduced to the following ones

Γ1 = −2

+∞∫

−∞

+∞∫

−∞

(
σ s
33u

0
3,1 + σ 0

33u
s
3,1 + σ s

12u
0
2,1 + σ s

13u
0
3,1

)
dx1dx2,

Γ2 = Γ3 = 0, (x3 = δ). (1.5.22)

Here we used the symmetry with respect to the plane x3 = 0 and the following
relations: σ 0

13 = σ 0
23 − 0 when x3 = ±δ; n3 = 1 when x3 = δ; and n3 = −1 when

x3 = −δ.

According to Eq. (1.5.20), we have:

σ s
33 = σ s

z = − qa3

4R3
(1 + 3 cos 2ψ), σ s

r z = −3qa3

4R3
sin 2ψ,

σ13 = x1
r

σr z, σ23 = x2
r

σr z, us3,1 = −3
1 + ν

2E
qa3

x1z

R5
.

(
z = x3, r

2 = x21 + x22 , R
2 = r2 + z2

)
(1.5.23)

Here r, θ and z are cylindrical coordinates (ψ is measured from the z− axis).
Using the equations (for x3 = δ)

R2 = r2 + δ2, δ/R = cosψ, r/R = sinψ, x1/r = cos θ,

rdr = RdR − R2 tanψ dψ, dx1dx2 = rdrdθ,

we calculate integral of Eq. (1.5.22) by means of Eqs. (1.5.21) and (1.5.23)

Γ1 = −2A

E

∞∫

0

2π∫

0

(
δσ s

z − νrσ s
r z + Ex1u

s
3,1

)
rdrdθ

= π
A

E
qa3

π/2∫

0

[sinψ(1 + 3 cos 2ψ) − 3ν sinψ tanψ sin 2ψ

+3(1 + ν) sin3 ψ
]
dψ = 2π

1 − ν

E
Aqa3. (1.5.24)
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According to Eq. (1.5.21), we have A = ∂σ 0
33/∂x1 so that

Γ1 = 2π
1 − ν

E
qa3

∂σ 0
33

∂x1
. (1.5.25)

Because of spherical symmetry of the point inclusion of Eq. (1.5.21), indices 1
and 33 in Eq. (1.5.25) can be replaced by 2 or 3, and by 11 or 22, correspondingly.
And so, the final general result can be written as follows:

Γi = 2π
1 − ν

E
qa3

∂σ

∂xi

(
σ = σ 0

11 + σ 0
22 + σ 0

33; i = 1, 2, 3
)
. (1.5.26)

This equation was first derived by J. D. Eshelby using another approach [8].
Thus, the inclusion-driving Γ − force is directly proportional to the gradient of the
first invariant of the external stress tensor σ 0

i j (x1, x2, x3).
According to Eshelby’s Eq. (1.5.26), point inclusions like atoms of carbon or

alloys tend to move into the region stretched by higher tensile stresses and to
strengthen a metal. However, atoms of hydrogen penetrating a lattice usually act
like wedges and cause embrittlement of the metal (for more detail, see [8]). Like
vortices in fluids, the motion of field singularities in solids leads to cardinal changes
of the properties of the material.

1.6 Electromagnetic Field

Consider the stationary electromagnetic field in a dielectric medium with zero con-
ductivity, ignoring the medium deformation. The field equations can be specified in
the form of the following invariant integrals expressing the energy and momentum
conservation laws [3, 4, 6]

Fj =
∮

S

(
Wn j − Dini E j − Bini Hj

)
dS (i, j = 1, 2, 3) (1.6.1)

and the following constitutive equations

Hi = ∂U

∂Bi
, Ei = ∂U

∂Di
, U = U (Bi , Di ). (1.6.2)

Here D, E, H and B are the field vectors,U is the potential energy of the field per
unit volume (only reversible thermodynamic processes are here taken into account),
and W is the following function

W (Ei , Hi ) = U (Bi , Di ) + Ei Di + Hi Bi (1.6.3)
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so that

Di = ∂W

∂Ei
, Bi = ∂W

∂Hi
. (1.6.4)

The force Fj in Eq. (1.6.1) is equal to the energy of the field spent to move a
field singularity on unit length along the x j− axis, that is, the j th component of the
driving force. Hence, Fj = 0 if there are no singularities inside S.

Let us show that Maxwell’s equations follow from the invariant integral,
Eq. (1.6.1), if Fj = 0 inside S. To the end, let us convert Eq. (1.6.1) using the
divergence theorem:

∮

S

(
Wn j − Dini E j − Bini Hj

)
dS =

∫

V

[
W, j − (

E j Di
)
,i − (

Hj Bi
)
,i

]
dV

=
∫

V

(
Ei, j

∂W

∂Ei
+ Hi, j

∂W

∂Hi
− E j Di,i − E j,i Di − Hj Bi,i − Hj,i Bi

)
dV

=
∫

V

[
Di

(
Ei, j − E j,i

) + Bi
(
Hi, j − Hj,i

) − E j Di,i − Hj Bi,i
]
dV = 0. (1.6.5)

From here, because V, Di , Bi , E j and Hj are arbitrary, it follows that

Ei, j = E j,i ; Hi, j = Hj,i ; Di,i = 0; Bi,i = 0. (1.6.6)

These are Maxwell’s equations in the stationary case.
Point charges in dielectric media. For an electrostatic field in an isotropic linear

dielectric, we have:

Di = εEi , Hi = Bi = 0. (i = 1, 2, 3) (1.6.7)

Here ε is the dielectric constant supposed to be equal 1 in vacuum.
In this case, the invariant integrals of Eq. (1.6.1) reduce to

Fj = ε

∮

S

(
1

2
Ei Ein j − Eini E j

)
dS (i, j = 1, 2, 3); (1.6.8)

Ei = −ϕ,i , ϕ,i i = 0. (1.6.9)

Here ϕ is the electrostatic potential.
Consider the following solution of the Laplace’s equation singular at the coordi-

nate origin r = 0 :

ϕ = q

4πεr
+ E0

i xi . (1.6.10)
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Here the first term represents the field of the point charge q while the second term
the uniform field of intensity Ei = E0

i .

Using Eqs. (1.6.8)–(1.6.10), we calculate the force of this field upon this charge
similarly to the calculation of Eqs. (1.3.6)–(1.3.9):

Fi = qE0
i . (1.6.11)

From here and Eq. (1.6.10), it follows that the force on the point charge, q1 at
(0, 0, 0) or q2 at (L , 0, 0), is equal to

F1 = ± q1q2
4πεL2

(F2 = F3 = 0). (1.6.12)

(sign “plus” is for the force on q2 and “minus” for the force on q1)
This is Coulomb’s Law which is valid only for subrelativistic charges. From

Eq. (1.6.12), in particular, it follows that the interaction force is attractive for charges
of opposite sign but repelling for charges of the same sign. Relativistic charges can
interact differently [6].

Addendum. For a non-stationary electromagnetic field and for irreversible pro-
cesses in deformable media, invariant integrals were derived in [4]. For ideal and
viscous relativistic fluids and for the relativistic heat flow in fluids, invariant inte-
grals of physical fields in the Minkowski space–time were obtained in [7]. Invariant
integrals of irreversible thermodynamics were given in [6].

The relativistic theory of electron beams based on the generalized Coulomb’s Law
of interaction of relativistic electric charges is presented in Chap. 10 of this book.
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Chapter 2
The Floating

Abstract This chapter deals with the floatation of some bodies on the surface of
water or other fluids accounting for the surface tension of the fluid. The latter makes
an important addition to Archimedes’ buoyancy force, especially substantial for
small floating objects. Generally, the buoyancy force appears to be equal to the
sum of Archimedes’ force and the term of summary surface tension forces. Some
particular problems illustrating the combined effects of both components are studied.
This chapter may be of interest for those who are involved in geophysics or marine
science.

Ships and boats navigate seas and oceans of the globe, continents float on the magma
of the Earth, and small insects run on the surface of a pond. To understand these
multiscale phenomena of floating, we need to investigate the forces acting on rigid
hydrophobic bodies located on the surface of a heavy incompressible fluid with
some surface tension. For floating continents, the surface layer providing the forces
of surface tension is the solid crust of the Earth about 10 km thick, and for icebreakers,
it is the polar ice about 1 m thick.

Also, let us neglect inertial forces and assume that the gravitational force is directed
downward perpendicularly to the horizontal xy-planewhich coincideswith the unper-
turbed liquid surface. The gas (air) over the liquid is assumed to be quiescent and
under constant pressure.

The Chapter is based on this author’s paper Some new applications of the invariant
integrals in mechanics published in J. Appl. Math. Mech. (JAMM), 76(5), 2012.

2.1 Invariant Integral of Floating

The nonlinear equation of hydrostatics of the heavy incompressible liquid with sur-
face tension γ is [1–3]:

wxx
(
1 + w2

y

) − 2wxwywxy + wyy
(
1 + w2

x

) = 2w

λ2

(
1 + w2

x + w2
y

)3/2
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(
λ2 = 2γ

ρg

)
(2.1.1)

Here, w = w(x, y) is the equation of the liquid surface, λ is the capillary con-
stant with the dimension of length, and ρg is the specific weight of the liquid
(wx ,wy,wxx ,wxy andwyy are the corresponding particular derivatives).

Equation (2.1.1) is obtained from the equilibrium equation of the surface layer of
the heavy liquid written by Laplace’s Law as follows:

γ

(
1

R1
+ 1

R2

)
= ρgw + const. (2.1.2)

Here, R1 and R2 are the main radii of curvature of the liquid surface, and the
constant is zero, if the displacement w is accounted from the unperturbed state.

When wx � 1 and wy � 1, this equation is reduced to:

wxx + wyy = ρg

γ
w (2.1.3)

Let us introduce the following invariant integral of floating
(
wx = w1,wy = w2

)
:

Fi = 1

2

∮

L

(
γw, jw, j ni − 2γw, j n jw,i + ρgw2ni

)
dL, (i, j = 1, 2) (2.1.4)

Let us prove that Eq. (2.1.3) follows from this invariant integral, if Fi = 0 so that
there are no bodies floating inside the closed contour L on the xy-plane. In this case,
we apply the divergence theorem to the right-hand part of Eq. (2.1.4) and get:

1

2

∫

S

[
γ
(
w, jw, j

)
,i − 2γ

(
w, jw,i

)
, j + ρg

(
w2

)
,i

]
dS

=
∫

S

[(
ρgw − γw, j j

)
w,i

]
dS = 0 (2.1.5)

From here, it follows that Eq. (2.1.3) is valid in S inside L because S is arbitrary.
When there is a body inside the contourL, the quantity Fi is equal to the corresponding
component of the horizontal force acting on this body.

Inwhat follows,wewill restrict the discussion to hydrophobic bodies forwhich the
wetting angle is greater than π/2. The typical materials of this type are graphite, pure
metals, and graphene. (For hydrophilic bodies, the wetting angle is less than π/2 and
all effects will be opposite). We will use the non-wetting angle α which is the contact
angle between the unwetted surface of the rigid body and the meniscus of the liquid
at their point of intersection, located along the wetting perimeter (π/2 > α > 0).
The angle α is the complementary angle to the wetting angle (Fig. 2.1).
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Fig. 2.1 Non-wetting angle
α for hydrophobic liquids
(π /2 > α > 0)

Below we show that, when a hydrophobic body comes into contact with the
liquid, this liquid resists the penetration of the body like an elastic spring and that
some attractive forces act between hydrophobic bodies on the surface of a liquid.

2.2 The Buoyancy Force

Suppose a rigid hydrophobic body, to which a vertical force Fz (the body weight
plus a possible external force) is applied, is to be at equilibrium on the surface of a
liquid. The surface of the rigid body wetted by the liquid is denoted by Sw and the
line separating the wetted and unwetted parts of the body surface is denoted by Lw

(the wetting contour).
The buoyancy force of magnitude Fz that acts on the hydrophobic body at rest is

directed upward along the z-axis; it is equal to the sum of the Archimedean force FA

and the resistance force of the hydrophobic liquid

Fz = FA + γ

∮

Lw

sin(θ − α)dL (2.2.1)

Here, θ called the edge angle is the angle in the normal section of the wetting
contour between the horizontal plane and the tangent to the body surface at the point
where the solid, liquid, and vapor meet; dL is an element of the wetting contour. For
floating bodies, to calculate the Archimedean and resistance forces, we should know
the submerging position of the wetting contour Lw which is determined from the
solution of Eq. (2.1.1).

For the Archimedean force to be active, it is important that the vessel, e.g., sub-
marine, to be surrounded by water under its bottom. A submarine can get in trouble
if it lies on the bottom so that water and its pressure are diminished underneath—it
can never come off its bed. The corresponding equation in paper [3] is valid only in
the particular case θ = π/2 considered in that paper.
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Equation (2.2.1) is the generalized buoyancy law taking account of the surface
tension of the liquid. It should be mentioned that this simple law can be applied
not only to waters of seas and rivers, but also to many other media that do not
seem to be liquids, for example, magma and lava beneath Earth’s crust, fluidized
beds in chemical reactors, ice at the bottom of glaciers, loose materials, quick sand,
extremely viscous materials, etc. To evaluate this property for a material, we need to
know the specific time of relaxation of shear stresses as compared to pressure. If the
time under consideration is large compared to this specific time, the material can be
accounted for as a liquid. And within this time scale, we can use Archimedes’s law
or the generalized law of Eq. (2.2.1).

2.3 Some Particular Problems

Let us consider some examples.
The penetration of a thin blade (Fig. 2.2). Suppose a semi-infinite rigid blade of
zero thickness is embedded along the plane x = 0 in a liquid which initially occupies
the lower half-space z < 0. Two faces and edge of the blade are parallel to the y-axis.
This problem is one-dimensional so that w = w(x) and, according to Eq. (2.1.1), the
equation of the perturbed surface of the liquid has the form

2w
(
1 + w2

x

)3/2 = λ2wxx (2.3.1)

The solution of this equation should satisfy the following condition at infinity:

w = 0, wx = 0 when x → ∞ (2.3.2)

Fig. 2.2 Penetration of a thin blade into a hydrophobic liquid
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The integral of Eq. (2.3.1) that satisfies this condition has the form:
(
1 − w2

λ2

)√
1 + w2

x = 1 (2.3.3)

It is obtained from Eq. (2.3.1) by the simple transformation and solution of the
following equation:

wx = u and wxx = u
du

dw
: 2w

(
1 + u2

)3/2 = λ2u
du

dw
(2.3.4)

The surface of the liquid w = w(x) can be easily found by solving Eq. (2.3.3).
Let us determine the penetration diagram, that is, the function Fz = Fz(w0)where

w0 is the depth of penetration and Fz is the resistance force which is equal to the sum
of the Archimedean force and the force of surface tension of a hydrophobic liquid.

In this case, theArchimedean force is equal to zero and the buoyancy force applied
to the faces of the blade is the surface tension which is, according to Eq. (2.2.1), equal
to Fz = 2γ lcosξ where the angle ξ is decreasing from π/2 to the unwetting angle α

in the process of embedding (l is the length of the blade and θ = π/2).
Since cotanξ = wx when x = 0, using Eq. (2.3.3) we get

√
1 − sinξ = w0

λ
where w0 = w(0) (2.3.5)

From here, we find the penetration diagram of the blade (Fig. 2.3):

Fz(w0) = 2γ l(w0/λ)

√
2 − (w0/λ)2 as λ

√
1 − sin α > w0 > 0 (2.3.6)

Fz(w0) = 2γ lcosα as w0 > λ
√
1 − sinα (2.3.7)

And so, the penetration diagram of a thin blade is similar to the extension diagram
of a nonlinearly elastic–ideally plastic bar.

The term ρgtlw0 should be added to the right-hand part of Eq. (2.3.7), if we take
into account the thickness t of the blade. In this case, Eq. (2.3.6) remains the same.

Fig. 2.3 Penetration diagram of a thin blade (Fz is the resistance force)
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The penetration of a wedge. Suppose a semi-infinite rigid wedge is embedded along
the plane x = 0 in a liquid which initially occupies the lower half-space z < 0.
Two faces of the wedge constitute the angles ±β to the plane x = 0 which is the
symmetry plane of the problem. The wedge is similar to an icebreaker penetrating
the layer of polar ice which can be viewed as a layer of the surface tension in this
model. Let us assume that α + β < π/2.

In this problem, the relationship of Eq. (2.3.3) is valid. On the first stage of the
penetration, when the contact angle between the face of the wedge and the surface
layer is decreasing from π

/
2 − β to α, the penetration diagram coincides with that

of Eq. (2.3.6). At this stage, the surface layer is not yet broken. On the second stage
of the penetration, the surface layer is cut by the wedge and the Archimedean force
starts acting.

As a result, we get the following diagram Fz = Fz(w0) on the second stage:

Fz = 2γ lcosα + ρgl
(
w0 − λ

√
1 − sinα

)2
tanβ as w0 > λ

√
1 − sinα (2.3.8)

As to the problem of icebreaker, the value of l should be considered as some
function of y depending on the shape of the keel and its position in the work process
of the ice cutting, with the nose of the keel being higher than the stern.
The penetration of a paraboloid. Let a paraboloidal cylinder z = −w0 + x2/(2R0)

penetrate into a liquid which initially occupies the lower half-space z < 0 where R0

is the radius of curvature of the parabola at x = 0 and w0 is the penetration depth of
the top of the cylinder. The plane x = 0 is the symmetry plane of the problem.

At the first moment of the contact with the liquid when w0 = 0, the edge angle θ

is equal to zero so that to meet the equilibrium the liquid surface instantly takes the
slope inclined under the angle (−α) to the horizontal plane at this point. It means that
the hydrophobic liquid behaves like a hydrophilic one at that moment, and the surface
tension makes the body get immersed in the liquid. And so, at the initial stage, there
is no balance and this process of sinking is dynamic until the edge angle θ turns to
be equal to α so that the effect of surface tension disappears. At this moment θ = α

we have:

x0 = R0tanα, w0 = x20
(2R0)

(2.3.9)

Fz = FA = F∗ = 1

3
ρgl R2

0(tanα)3 as θ = α (2.3.10)

These equations provide the initial conditions of the beginning of the stable pro-
cess of penetration when θ > α, x0 > R0tanα and FA > F∗ characterized by the
following penetration diagram:

Fz(w0) = 1

3
ρgR2

0(tan θ)3 + 2γ lsin(θ − α) (2.3.11)
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x2∗ = 2R0(w0 − z∗), z2∗ = λ2[1 − cos(θ − α)], x∗ = R0tan θ (2.3.12)

Here, (±x∗, −z∗) are two points where liquid meniscus, solid, and air meet
together, and θ is the angle between the x-axis and the tangent to the parabola at the
point (+x∗, −z∗) and w0 = −z(0) is the depth of penetration. The second equation
of Eqs. (2.3.12) follows from the equation of the meniscus, Eq. (2.3.3).

From Eq. (2.3.12), we find that

w0 = 1

2
R0(tan θ)2 + λ

√
1 − cos(θ − α) (2.3.13)

The pair of equations, Eqs. (2.3.11) and (2.3.13), provides parametrically the
penetration diagram Fz − w0 with θ being the parameter.
The penetration of a round cylinder into a liquid. For axisymmetric problems of
penetration of cylinder, cone or sphere, the equation of liquid surface w = w(r)
deformed by surface tension is described by the equation

d2w

dr2
+ 1

r

dw

dr

[

1 +
(
dw

dr

)2
]

= 2w

λ2

[

1 +
(
dw

dr

)2
]3/2

(2.3.14)

It can be shown that the solution of this equation tends to zero very fast when
r � λ, namely:

w = C0

√

(πλ)/
(
2r

√
2
)
e−r

√
2/λ when r → ∞ (2.3.15)

Here, C0 is a constant of the dimension of length characterizing the depth of the
penetration.

For a round cylinder of radius Rc, using Eq. (2.3.14), it is easy to find the pene-
tration diagram Fz − w0 in the well-developed stage

Fz = πρgw0R
2
c + 2πγ Rccosα when

2w0

λ2
+ 1

R0
≥ cosα

Rc
(2.3.16)

Here, R0 is the radius of curvature of the radial cross section of the liquidmeniscus
on the surface of the cylinder. For example, a very thin needle penetrates a liquid
without resistance. Using the results of calculations in this section, we can estimate
the size and weight of small beings that can run on the surface of a pond.
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2.4 The Interaction Between Floating Bodies

Consider first the problem of a heavy sphere floating on the surface of a liquid
and find the perturbed liquid surface. The treatment is restricted to the case when
wx � 1 andwy � 1 which is always satisfied at distances that are large compared
with the sphere radius. In this case, Eq. (2.1.1) has the form

λ2 1

r

d

dr

(
r
dw

dr

)
= 2w (2.4.1)

Here, r is the distance from the axis of symmetry of the problem.
In the point approximation, that characterizes the field at distances large compared

to the radius of the sphere, the solution of Eq. (2.4.1) which vanishes at infinity has
the following form

w = CK0

(√
2

λ
r

)

(2.4.2)

Here, C is an arbitrary constant and K0(ξ) is the zero-order MacDonald function
of ξ called also the modified Bessel function. This function is singular at the origin
of coordinates so that

w = C ln

(√
2

λ
r

)

when r → 0 (2.4.3)

The weight Mg of this point singularity characterizing the heavy sphere is bal-
anced by the surface tension of the liquid, and the equivalent force of which is equal
to 2πrγC/r according to Eq. (2.4.3). From the equilibrium condition, we find that
C = Mg/(2πγ ) and

w = − Mg

2πγ
K0

(√
2

λ
r

)

(2.4.4)

Let us study the forces acting on the floating sphere caused by the perturbed
liquid surface w = w0(x, y) made by other sources different from this floating
sphere. Evidently, these forces are zero, if w0(x, y) = 0.

The perturbed liquid surface and the floating sphere at the coordinate origin create
together the following surface

w = w0(x, y)
Mg

2πγ
K0

(√
2

λ
r

)

(2.4.5)
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In what follows we prove that the horizontal force acting on the floating sphere
has the following components

Fx = −Mg
∂w0

∂x
, Fy = −Mg

∂w0

∂y
(2.4.6)

Here, ∂w0/∂x and ∂w0/∂y are taken at x = y = 0 where the floating sphere is
situated.

Proof The proof is typical and exemplary for the work with invariant integrals and,
therefore,will be given further in all detail. Let us calculate the force Fx on thefloating
sphere at the coordinate origin using Eq. (2.1.4). As the integration contour L, let
us use the narrow rectangle x = ±δ, y = ±ε when δ → 0, ε → 0 and ε/δ → 0.
This closed contour passed counterclockwise encompasses the origin of coordinates
where the floating sphere is. Because the integral of Eq. (2.1.4) is invariant with
respect to any closed contour of integration, the result of this calculation will be
valid for any contour L encompassing the coordinate origin.

Since ε/δ → 0, we can ignore the integral over the short sides of the rectangle
where x = ±δ. On the horizontal sections of the integration path where y = ±ε, we
have: n1 = 0 and n2 = ±1 where sign plus is for the upper path and sign minus for
the lower path. With regard of this consideration, Eq. (2.1.4) for Fx is reduced to the
following one

Fx = −γ

∮

L

∂w

∂x

∂w

∂y
n2dL = −γ

∮

L

(
∂w0

∂x
+ ∂ws

∂x

)(
∂w0

∂y
+ ∂ws

∂y

)
n2dL (2.4.7)

Here, ws is the singular term of Eq. (2.4.5) given also by Eq. (2.4.4).

According to the rule of -integration of invariant integrals [2], we have:

∮

L

∂w0

∂x

∂w0

∂y
n2dL → 0 when ε → 0 and δ → 0 (2.4.8)

∮

L

∂ws

∂x

∂ws

∂y
n2dL → 0 when ε → 0, δ → 0 and ε/δ → 0 (2.4.9)

The first equation is evident since w0(x, y) has no singularity at x = y = 0
To prove Eq. (2.4.9), let us calculate using Eq. (2.4.4):

∂ws

∂x
= − Mg

2πγ

∂r

∂x

∂

∂r
K0

(√
2

λ
r

)

= Mgx
√
2

2πγλr
K1

(√
2

λ
r

)

→ Mg

2πγ

x

r2
as r2 = x2 + y2 → 0;
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∂ws

∂y
= Mg

2πγ

√
2

λ

y

r
K1

(√
2

λ
r

)

→ Mg

2πγ

y

r2
as r2 = x2 + y2 → 0 (2.4.10)

Here, K1(ξ) is the first-order MacDonald function of ξ that satisfies the following
relations:

K1(ξ) = −dK0(ξ)

dξ
, K1(ξ) → 1

ξ
when ξ → 0 (2.4.11)

According to Eq. (2.4.10), the integral in Eq. (2.4.9) is reduced to the calculation
of the integral of the odd function which is equal to zero:

ε

+δ∫

−δ

x

r4
dx = 0 (2.4.12)

On the same reason, we get that

γ

∮

L

∂w0

∂y

∂ws

∂x
n2dL → Mg

2π

+δ∫

−δ

∂w0

∂y

x

r2
dx → 0 (2.4.13)

Since the function ∂w0/∂y is limited in the neighborhood of the coordinate origin.
And so, due to Eqs. (2.4.7) to (2.4.13), the component Fx of the force on the

floating sphere is equal to

Fx = −γ

∮

L

∂w0

∂x

∂ws

∂y
dL = −Mg

2π

(
∂w0

∂x

)

x=y=0

lim
∮

y

x2 + y2
dL

= −Mg

(
∂w9

∂x

)

x=y=0

(2.4.14)

The limit of the contour integral over the narrow rectangle in Eq. (2.4.14) is
reduced to the following one

2

+∞∫

−∞

dt

1 + t2
= 2π (2.4.15)

Thus, the first equation in Eqs. (2.4.6) is proven. The second one can be proven
similarly using a closed path of integration over the sides of the narrow rectangular
stretched along the y-axis near the coordinate origin.
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Two floating spheres. Let another small sphere of mass m float on the surface of the
liquid at the point x = R, y = 0 Let us find the interaction force it produces on the
sphere of massM at the coordinate origin.

According to Eqs. (2.4.2) to (2.4.5), this small sphere creates its own field

w0(x, y) = − mg

2πγ
K0

(√
2

λ
r0

)

where r0 =
√

(x − R)2 + y2 (2.4.16)

This sphere makes the following perturbation at the point x = y = 0 :
(

∂w0

∂x

)

x=y=0

= − mg

2πγ

√
2

λ
K1

(√
2

λ
R

)

,

(
∂w0

∂y

)

x=y=0

= 0 (2.4.17)

Using Eq. (2.4.6), we find the force on the sphere of mass M produced by the
floating mass m

Fx = mMg2

πγλ
√
2
K1

(√
2

λ
R

)

, Fy = 0 (2.4.18)

By means of Eq. (2.4.5), we can also find a simpler relation in the case of very
small floating objects when R � λ

Fx = mMg2

2πγ R
(2.4.19)

This equation is characteristic of Ampere’s Law of attraction for two parallel
linear unidirectional currents.

However, when R � λ, the force of attraction determined by Eq. (2.4.18)
decreases even faster than exponentially because

K1(ξ)
√

π/(2ξ)e−ξ when ξ → ∞ (2.4.20)

These results are obviously not only true for spheres but also for any bodies with
linear dimensions that are small compared with the distance between the bodies. As
the general result, all floating hydrophobic bodies tend to coalesce but the forces of
attraction are of an extremely short range.

2.5 Point Masses on a Hard Surface

Let us consider the motion of a heavy point mass on an absolutely smooth hard
horizontal surface w = w(x1, x2) when ∂w/∂x1 � 1 and ∂w/∂x2 � 1.
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In this case, the invariant integral is written as

Fi =
∮

L

(U + K )nidL (i = 1, 2) (2.5.1)

Here, U = −mgw + const is the potential energy; K = 1

2
mvivi is the kinetic

energy of the system; and m and vi are the mass and velocity components of the
point.

Applying the divergence theorem to Eq. (2.5.1) provides

Fi =
∫

A

(U + K ),idA = −mgw,i + mvkvk,i = mgw,i + m
dvi
dt

(2.5.2)

It can be shown that

vkvk,i = dvi
dt

where vk = dxk
dt

(2.5.3)

From Eqs. (2.5.2) and (2.5.3), it follows that

Fi = −mgw,i + m
dvi
dt

(2.5.4)

This is the law of motion of a point heavy mass on a slightly curved hard surface.
In the case, if gw,i � dvi/dt , this law is reduced to that of Eq. (2.4.6) governing
floating bodies on the liquid surface. However, there is no similarity between both
problems because there are no forces of interaction between point masses moving
on a hard surface.
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Chapter 3
The Rolling

Abstract During two hundred years, the Coulomb’s coefficient of rolling friction
and the force of resistance to rolling were being determined experimentally in expen-
sive natural tests. In this Chapter, using the invariant integral of rolling and new exact
solutions of the contact problems of the theory of elasticity, Coulomb’s rolling fric-
tion coefficient and the resistance force were calculated in all basic cases, including
the rolling of: (i) an elastic cylinder on an elastic half-space of another material, or
on an elastic plate, or on a sticky membrane; (ii) a ball on an elastic half-space, or
an elastic plate, or on a membrane; and (iii) a torus on an elastic half-space, or on
an elastic plate, or on a membrane. The theoretical results comply very well with
known test probes. This Chapter is a “must-to-know” for automotive engineers.

Man-made transport was born when the wheel was invented. Since then, the study
of rolling has started. In 1781, the problem of rolling was formulated by Charles
Coulomb (1736–1806) who offered Coulomb’s Law of rolling based on the empir-
ical rolling resistance coefficient. In this chapter, using the mathematical theory of
elasticity and a new CH rule, the rolling resistance coefficient is calculated in the
cases of:

(a) an elastic cylinder rolling on another elastic cylinder of another material in
particular on an elastic half-space, and an elastic wheel rolling on the rail of
another elastic material;

(b) an elastic ball rolling on another elastic ball of another material, particularly on
an elastic half-space;

(c) an elastic torus rolling on an elastic half-space of another material; and
(d) a cylinder, or a ball, or a torus rolling on a tightly stretched membrane or on a

thin elastic plate.

Empirical results of the measurement of the rolling resistance coefficient gained
earlier by the railroad and automobile engineers appeared to be in excellent agreement
with the results of this analytical calculation based on the suggested rule of rolling.
The effect of adhesion of rolling bodies was studied using the invariant integral and
some exemplary cases.

The chapter is based on this author’s paper The laws of rolling published in J.
Physical Mesomechanics, 21(5), 2018.
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3.1 Introduction

Wheel was one of the earliest and most important inventions of the man because,
except for sleds on ice and snow, it was much easier to wheel a weight than to drag
it. That is why the man-made transport was born when the wheel was invented. This
happened long before the horse domestication. In his fascinating book Life in Ancient
Egypt, Adolf Erman [1] told us that wheeled carts carried by oxen were common in
the ancient Egypt about two thousand years before the conquest of Egypt by proto-
Indo-European Hyksos who were the first to invent chariots and breed horses for
war.

And so, since the dawn of human history the problem of rolling resistance has
existed. Rolling resistance sometimes called also rolling friction or rolling drag is
the force resisting the motion when a body rolls on a surface. In mathematical terms,
this problem sounds as follows.

What is the value of the rolling resistance coefficientCrr in the following equation?

F = Crr N (3.1.1)

Here, N is the load on the wheel, for example, the weight of the vehicle, and F
is the rolling resistance force.

The greats including Leonardo de Vinci, Leonhard Euler, Charles de Coulomb,
Heinrich Hertz, and verymany others stood before this problem but test seemed to be
the only way to find out the rolling resistance coefficient—see, e.g., Special Report
216 of the US National Academy of Sciences [2] and sources [3–10], among many
thousands of other papers.

For example, in the case of cast iron mine car wheels on steel rails, the following
empirical equation is used [2, 9]

Crr = 0.0048(9/R)1/2(100/N )1/4 (3.1.2)

Here, R is the wheel radius in inches, and N is the load on the wheel in lbs.
Coulomb’s Law and Dupuit’s equation are, probably, the most known theories of

rolling that say:

Crr = ηC/R (Coulomb) (3.1.3)

Crr = ηD/R2 (Dupuit) (3.1.4)

Here,ηC andηD are someempirical constants. These equationswork in somecases
and do not work in others, as it is common for empirical theories. It is noteworthy
that in 1781, the Theorie des machines simples won Charles Augustin Coulomb the
Grand Prix from the Paris Academie des Sciences for this theory [3].

To get inwithwhat follows, consider at first the elementary problemof equilibrium
of an absolutely rigid heavy cylinder of radius R lying in a very small and shallow,
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Fig. 3.1 A cylinder rolling out of a rigid socket on the road when TR ≥ aN (where a � R)

cylindrical socket of the same radius in a half-space y < 0 of an absolutely rigid
material. Let us assume there is no adhesion and apply the thrust force T to the
cylinder center directed along the half-space surface y = 0,with the gravity force N
of the cylinder being directed perpendicularly. Evidently, without a socket, a however
small thrust force makes the cylinder roll. It is the socket that provides resistance to
rolling so that, if thrust T is less than aN/R, no rolling occurs (2a is the width of
the cylindrical socket, a � R). However, the rolling starts on when T R > aN so
that T R = aN is the critical state; see Fig. 3.1.

In reality, a socket is formed by an elastic deformation of the foundation and
cylinder caused by the weight and other forces acting upon the cylinder. The socket
moves along the surface together with the rolling cylinder. The magnitude of sockets
made by rolling bodies should be found from the solution of the corresponding
mixed boundary value problems of the elasticity theory. To treat these problems,
the Kolosov–Muskhelishvili representations [11] and the Riemann boundary value
problem solved by Gakhov still in 1930 [12] are used in this chapter.

And so, the laws of rolling derived below are based on pure reason and mathemat-
ics. They accrue from the earlier works of this author [13–28] and well accommodate
all previous empirical data.

3.2 An Elastic Cylinder on Another Elastic Cylinder

We study, at first, the mathematical problem of the elasticity theory, and then, based
on its solution, we take account of the rolling and adhesion effect.

The Contact Problem of the Theory of Elasticity Let two elastic cylinders of
radii R1 and R2 generally made of different materials contact each other so that
the stresses and strains in both are under plane strain conditions. We confine our-
selves by small deformations, which is the most important practical case, so that the
width of the contact area 2a is always much smaller than R1 and R2, that is R1 � a.

We assume also that |R2| > R1 > 0.
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When R2 → ∞, the second cylinder turns into a half-space which is the most
important particular case. When R2 < 0, it is the infinite elastic space with a cylin-
drical hole of radius |R2|, inside which an elastic cylinder of radius R1 is in contact.

Let us use the Cartesian rectangular coordinate system Oxy in a plane normal to
the parallel axes of the cylinders so that its origin O is chosen to be at the center of
the contact area, and y be the axis of symmetry of the problem directed to the center
of the cylinder of radius R1. This cylinder is pressed to the other cylinder by force
N applied to its center.

Theboundaryvalue conditions of this plane-strain contact problemof the elasticity
theory can be formulated as follows:

y = 0, |x | > a : (
σy − iτxy

)± = 0; (i = √−1) (3.2.1)

y = 0, |x | < a : [
σy − iτxy

] = 0,

[
∂u

∂x
+ i

∂v

∂x

]
= −i x

(
1

R1
+ 1

R2

)
+ C.

(3.2.2)

Here, (u, v) is the displacement vector; σx , σy and τxy are the stress tensor compo-
nents; constant C characterizes the difference in displacement u of opposite surfaces
of the cylinders, which forms in the process of compression before the adhesion on
contact, and z = x + iy is the complex variable.

Besides, the following designation is used everywhere in this chapter:

A± = lim A when z → x ± i0; [A] = A+ − A−. (3.2.3)

The second equation in Eq. (3.2.2) means that neither rupture nor sliding occur
on the contact area beyond of some previous local distortion.

Let us use the following Kolosov–Muskhelishvili representations for elastic
stresses and strains in the plane elasticity theory [11]:

σx + σy = 4ReΦ j (z) ( j = 1, 2); (3.2.4)

σy − iτxy = Φ j (z) + Φ j (z) + zΦ ′
j (z) + Ψ j (z); (3.2.5)

2μ j

(
∂u

∂x
+ i

∂v

∂x

)
= κ jΦ j (z) − Φ j (z) − zΦ ′

j (z) − Ψ j (z). (3.2.6)

Here, j = 1 and j = 2 are subscripts of the upper and lower half-planes, corre-
spondingly;Φ(z) andΨ (z)with subscripts 1 or 2 are some functions of the complex
variable z which are analytical in the corresponding half-planes; μ j and ν j are the
shear modulus and Poisson’s ratio of the corresponding material, and κ j = 3 − 4ν j

for plane strain.
The boundary value problem of Eqs. (3.2.1) to (3.2.6) unsolved byMuskhelishvili

[11] is being solved here by the approach published by this author in [14, 16].
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Let us use the following analytical continuation:

Φ1(z) = −Φ1(z) − zΦ ′
1(z) − Ψ1(z) (y = Imz < 0); (3.2.7)

Φ2(z) = −Φ2(z) − zΦ ′
2(z) − Ψ2(z)k4 (y = Imz > 0). (3.2.8)

When y = 0, we get from here:

Φ±
1 = −Φ∓

1 − xΦ ′ ∓
1 − Ψ ∓

1 , (3.2.9)

Φ±
2 = −Φ∓

2 − xΦ ′ ∓
2 − Ψ ∓

2 . (3.2.10)

Here, either the upper or the lower signs hold.
In view of

[
σy − iτxy

] = 0 everywhere at y = 0, we get from Eq. (3.2.5) that

Φ+
1 + Φ+

1 + xΦ ′ +
1 + Ψ +

1 = Φ−
2 + Φ−

2 + xΦ ′ −
2 + Ψ −

2 . (3.2.11)

Using Eqs. (3.2.9) and (3.2.10), we can rewrite Eq. (3.2.11) as follows:

Φ+
1 − Φ−

1 = Φ−
2 − Φ+

2 , (3.2.12)

or

(Φ1 + Φ2)
+ = (Φ1 + Φ2)

−. (3.2.13)

From here, based on the principle of analytical continuation we conclude that

Φ1(z) = −Φ2(z). (3.2.14)

Also, due to Eqs. (3.2.1), (3.2.11), and (3.2.12) we have

Φ+
1 = Φ−

1 as |x | > a, y = 0. (3.2.15)

Hence, functions Φ1(z) and Φ2(z) are analytical in the whole plane z cut along
y = 0,−a < x < a.

Using Eqs. (3.2.9) and (3.2.10), the second boundary condition in Eq. (3.2.2) is
written at y = 0, −a < x < a as follows:

μ2
(
κ1Φ

+
1 + Φ−

1

) = μ1
(
κ2Φ

−
2 + Φ+

2

) − 2i xμ1μ2

(
1

R1
+ 1

R2

)
+ 2μ1μ2C.

(3.2.16)
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From here, using Eq. (3.2.14) we come to the following Riemann problem for
one pair of functions [12, 14, 16]:

Φ+
2 + mΦ−

2 = 2isx − 2μ1μ2C(μ1 + μ2κ1)
−1 (y = 0, |x | < a). (3.2.17)

Here,

m = μ2 + μ1κ2

μ1 + μ2κ1
, s = μ1μ2

μ1 + μ2κ1

(
1

R1
+ 1

R2

)
. (3.2.18)

The general solution of this Riemann problem in the class of functions limited at
z → ±a and z → ∞ can be written as follows:

Φ2(z) = 2is

1 + m
z − 2is

1 + m
F(z) − 2μ1μ2

C

(1 + m)(μ1 + μ2κ1)
, (3.2.19)

where

F(z) = (z − a)1/2−iδ(z + a)1/2+iδ, (3.2.20)

δ = 1

2π
lnm. (3.2.21)

Here, F(z) is the single-valued analytical branch of the function in the z-plane
cut along y = 0,+a > x > −a, which is equal to

F(z) = z + 2iaδ − a2

2z

(
1 + 4δ2

) + O
(
z−2

)
as z → ∞. (3.2.22)

Constants a and C are determined by the following behavior of function Φ2(z) at
infinity [14, 21–23]:

Φ2(z) = i N

2π z
as z → ∞. (3.2.23)

Here, N is the value of the equivalent force of the pressure on the contact area
per unit of the cylinder length acting upon the lower half-plane, which is equal to the
corresponding weight of the upper cylinder of radius R1.

According to Eqs. (3.2.19) and (3.2.22), as z → ∞ we have

Φ2(z) = 2is

1 + m
z − 2is

1 + m

(
z + iaδ − a2

2z
− 2a2δ2

z

)
− 2μ1μ2C

(1 + m)(μ1 + μ2κ1)
.

(3.2.24)
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By comparing Eqs. (3.2.23) and (3.2.24), we get

2sa2 + 8sa2δ2 = N

π
(1 + m), C = aδ

(
1

R1
+ 1

R2

)
. (3.2.25)

Using Eqs. (3.2.17) and (3.2.25), we find the width of the contact area

a2 = N

2π

μ1(1 + κ2) + μ2(1 + κ1)

μ1μ2
(
1 + 4δ2

)
(

1

R1
+ 1

R2

)−1

. (3.2.26)

It is more convenient to use this equation in terms of common technical elastic
constants as follows:

a2 = 4N

π
(
1 + 4δ2

)
(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)(
1

R1
+ 1

R2

)−1

. (3.2.27)

Here, E and ν are Young’s modulus and Poisson’s ratio, with subscripts corre-
sponding to the relative cylinder.

Using Eqs. (3.2.19) to (3.2.21) and (3.2.25), we come to the final solution:

Φ2(z) = 1

4
Ai

{

z − (
z2 − a2

)1/2
(

z + a

z − a

)iδ

+ iaδ

}

. (3.2.28)

Here,

A =
(

1

R1
+ 1

R2

)(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)−1

. (3.2.29)

Using Eqs. (3.2.5) and (3.2.28), the stresses on the contact area y = 0,−a < x <

a can be written as follows:

σy = −1

2
Ach(πδ)

√
a2 − x2 cos

(
δ ln

∣∣∣∣
a + x

a − x

∣∣∣∣

)
, (3.2.30)

τxy = −1

2
Ash(πδ)

√
a2 − x2 sin

(
δ ln

∣
∣∣∣
a + x

a − x

∣
∣∣∣

)
. (3.2.31)

Equations (3.2.27) to (3.2.31) provide the solution of the stated problem in most
convenient shape. For the particular case δ = 0, it was given in [25, 26].

The Problem of Rolling Now, let us try to roll the upper cylinder of radius R1 on
the horizontal foundation, that is, on the lower cylinder of radius R2 = ∞. Suppose
T is the thrust or driving force per unit of the cylinder length applied to the center of
the upper cylinder in the horizontal direction perpendicular to the vertical direction
of force N , particularly, the weight of the upper cylinder. If both the cylinder and
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foundation are rigid, neither socket nor dent can form and no contact area can be
made so that the cylinder starts on rolling at a however small thrust because the
rolling resistance force F is equal to zero.

But, if either the cylinder or foundation is elastic, a dent forms so that a nonzero
contact area provides some resistance to the rolling. If thrust T is small enough so
that vector (T, N ) of the resultant force points to somewhere inside the contact area,
the equilibrium holds and no rolling occurs. This is evident because some change of
the contact area size �a due to elasticity has the order of a(T/N )2 for small values
of T/N and, hence, can be ignored.

As soon as vector (T, N ) of the resultant force points to somewhere outside the
contact area, the equilibrium gets broken and an accelerated rolling begins. This
follows from the equilibrium equation of the moments of forces with respect to point
y = 0, x = a even for the imaginable situation when both elastic bodies become
rigid for small values of T . For real elastic bodies, the loss of balance is even more
significant because of an additional elastic reaction of the lower foundation.

Thus, we come to the following rule: Rolling can start only when the resultant
force vector (T, N ) points to the front of the contact area so that we have

T

N
= a

R1
. (3.2.32)

This is the necessary rule of rolling called the “chief head” rule, or the CH rule;
for short, see Fig. 3.2. It is central for the understanding of the rolling processes and
rolling resistance [25, 26].

The state characterized by the CH rule of Eq. (3.2.32) corresponds to the rolling
at constant speed when thrust T is equal to the rolling resistance force F . If T/N <

a/R1, no rolling occurs, but if T/N > a/R1, the upper cylinder of mass M rolls and
moves along the x-axis at the acceleration dV/dt so that

MdV/dt = T − aN/R1. (3.2.33)

Fig. 3.2 CH rule of rolling TR = aN (where a � R)
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Based on the CH rule, the rolling resistance coefficient is equal to

Crr = a/R1. (3.2.34)

Here, the value of a is completely determined by Eq. (3.2.27) written in terms of
N , E1, E2, R1, R2, ν1, ν2 and parameter δ.

And so, Coulomb’s problem is solved, and the correct value of Crr proves to be
very different from both Coulomb’s Law and Dupuit’s equation as well as from the
empirical law of Eq. 1.1.2.

In the important particular case when δ = 0, E1 = E2 = E, ν1 = ν2 = ν,

R2 = ∞ and R1 = R, the expressions in Eqs. (3.2.27) to (3.2.32) and Eq. (3.2.34)
reduce to the following equations:

Φ(z) = i
(
1 − ν2

)

2E R

(
z −

√
z2 − a2

)
; (3.2.35)

σy = −1 − ν2

E R

√
a2 − x2, τxy = 0 (y = 0, |x | < a) (3.2.36)

Crr = T

N
= a

R
= 2

√
2N

(
1 − ν2

)

π E R
. (3.2.37)

To demonstrate the accuracy of the present analysis based on the CH rule, let us
calculate, as an example, the rolling resistance coefficient for railroad steel wheels
on steel rails for passenger railcars with eight 36-in. diameter wheels on the 63 kg/m
rails used in the New York Central Railroad System.

In this case, the railhead width being contacted with the railcar wheel is equal to
3 in. = 7.62 cm so that using Eq. (3.2.37), we get the following rolling resistance
coefficient:

For 10-ton railcar Crr = 0.00113 and for 40-ton railcar Crr = 0.00226

(ν1 = ν2 = 0.29, E1 = E2 = 200GPa, δ = 0, R2 = ∞, and R1 = 45.72 cm).

The elastic constants of both the rail and wheel are very close. The plane-strain
condition holds well in the process zone of the contact area because its width 2a is
much smaller than the 3-in. railhead or any other dimension of the structure. Indeed,
according to Eq. (3.2.37) we have a = 0.5mm for 10-ton railcar and a = 1mm for
40-ton railcar.

This result of calculation of the rolling resistance coefficient coincides with the
corresponding standard data; see, e.g., Special Report of the US National Academy
of Sciences [2], according to which Crr 0.001–0.0024 for railroad steel wheel on
steel rail and Crr = 0.002 for passenger railcars.

Similarly, we can calculate that for ordinary car tires on concrete or asphalt the
rolling resistance coefficient is equal to Crr = 0.01–0.015 in accordance with avail-
able data from Special Report of the US National Academy of Sciences [2].
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Also, let us estimate the practical significance of real values of parameter δ

responsible for some anomalous distortion. Since according to Eq. (3.2.18) we have
3 > m > 1/3, we can derive from Eq. (3.2.2) that

−0.175 < δ = 1

2π
lnm < 0.175.

For common values of Poisson’s ratio in the range (1/4, 1/3), the value of δ

varies in even more narrow interval (−0.11,+0.08). Small parameter δ causes some
specific variations significant only at the very ends of the contact area. It means
that when m 
= 1 the violation of the condition of non-penetration occurs only in
the small neighborhood of the ends so that it can be ignored despite this makes the
problem ill-posed [18, 20, 25, 26]. In fact, these variations indicate that when δ 
= 0
some local sliding zones much smaller than a form near the ends of the contact area.

All mathematical calculations of this section are also valid for plane stress by
means of the well-known substitution of constants κ j in Eq. (3.2.6). This is the case
of a very thin wheel rolling on a very thin rail. However, this case is of almost no
practical value for the rolling because the contact area width a is already very small
while the thickness of the plane-stress wheel should be much less than even this
width [19, 23].

3.3 Invariant Integral of Rolling

The end of a contact zone is a singular point of the boundary value problems of the
theory of elasticity, which requires a special treatment. Because of atomic forces of
attraction, all solid surfaces experience the effect of adhesionwhile getting in contact.
This effect can prevail over usual mechanical forces for objects of sufficiently small
dimensions. Besides, it can be used in practice for some control of rolling processes
by means of special adhesives and lubricants. And so, the effect of adhesion makes
it necessary to reconsider the problem of the previous section in a more general case
of unlimited stresses at the end of a contact zone.

Let us consider a small neighborhood of the point O where the roller and founda-
tion part, in the scale very small as compared to the radius of curvature of the roller
and the contour size of the contact zone. If we look through a microscope at this
point, we can see the roller as the upper half-plane y > 0 and the foundation as the
lower half-plane y < 0, with the contact zone being along y = 0, x > 0 and with
the free traction zone being along y = 0, x < 0.

This local plane-strain state is exactly the same as that near the crack-tip, when the
open-mode tensile interface crack cutting a body. However, this similarity with this
problem of fracture mechanics is valid only for this small neighborhood at the rear
end of the contact area under consideration at one moment of rolling. The front of the
contact area of the roller that meets the foundation is under the opposite condition
of compression.
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And so, we come to the following singular problem of the plane elasticity:

y = 0, x < 0 : (
σy − iτxy

)± = 0; (3.3.1)

y = 0, x > 0 : [
σy − iτxy

] = 0, [u + iv] = 0. (3.3.2)

All designations are the same as in the previous section.
The boundary value problem of Eqs. (3.3.1) and (3.3.2) is reduced to the homoge-

nous problem of Eq. (3.2.17):

Φ+
2 + mΦ−

2 = 0 as y = 0, x > 0. (3.3.3)

Its solution in the class of analytical functions having a singularity of minimum
order at the singular point z = 0 has the following shape:

Φ2(z) = 1

2
√
2π

(K I − i K I I )z
−1/2+iδ,

(
δ = 1

2π
lnm

)
. (3.3.4)

Here, KI and K I I are some constants similar to the stress intensity factors in
fracture mechanics which play the same part in the current problem because as a
result of adhesion a local zone of tensile stresses forms near the rear point of the
contact area of the roller and foundation. In the process of rolling, these constants
have some limiting values described in terms of the effective energy loss γ f m per
unit of square called the specific energy of adhesion (see [21, 23], for more detail).

To calculate this loss, we study the small neighborhood of the point O where the
solution given by Eq. (3.3.4) is valid and calculate the following invariant integral:

�1 =
∮

S

(
Un1 − σi j n j ui,1

)
dS, (i, j = 1, 2, 3). (3.3.5)

Here, the closed contour S encircles the point O. As S, it is convenient to use
a narrow symmetrical rectangle like that in Sect. 1.3. Equation (3.3.5) provides the
typical � force of energy losses spent per unit square to overcome the drag.

In the limit, Eq. (3.3.5) is reduced to the following equation [21, 23]:

�1 = π

2
lim[σ2i (+ε, 0)ui (−ε, 0)], (ε → 0, i = 1, 2, 3). (3.3.6)

This equation allows one to calculate the driving force �1 from the local elastic
field of stresses σi j (x1, x2) and displacements ui (x1, x2) near the singular point O
where x1 = x, x2 = y (repeated index means summation).

The calculation using Eqs. (3.3.6), (3.3.4), (3.2.14), and (3.2.4) to (3.2.6) leads to
the following result
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�1 = (μ1 + μ2κ1)(μ2 + μ1κ2)

4μ1μ2[μ1(1 + κ2) + μ2(1 + κ1)]

(
K 2

I + K 2
I I

)
. (3.3.7)

The energy conservation equation�1 = 2γ f m serves to find the size of the contact
area between the roller and foundation under the adhesion conditions.

Particularly, when μ1 = μ2 = μ and κ1 = κ2 = 3 − 4ν, we have:

�1 = 1 − ν

2μ

(
K 2

I + K 2
I I

)
. (3.3.8)

This equation is well known also in fracture mechanics [21, 23].

3.4 The Effect of Adhesion on the Rolling

Let us study the effect of adhesionusing the results inSect. 3.3when δ = 0, i.e.,m =1,
so that μ1(1 − ν2) = μ2(1 − ν1), or in most common case when μ1 = μ2 = μ and
ν1 = ν2 = ν. In this case, the stress intensity factor KI I at the singular point is equal
to zero. By applying the procedure of Sect. 3.2, we come to the following boundary
value problem which is similar to Eq. (3.2.17)

Φ+
2 + Φ−

2 = 2isx as y = 0,−b < x < a. (3.4.1)

Here, s is given by Eq. (3.2.18).
As a reminder, the vector of the equivalent force of normal tractions on the contact

area, which magnitude is equal, for example, to the weight of the upper cylinder per
unit length, is directed along the y-axis of this Oxy system. As a result of adhesion,
the positive thrust force T applied to the center of the rolling cylinder can create some
local extension and concentration of tensile stresses near the trailing point x = −b
of the contact area.

The rolling starts when the adhesive bond at point x = −b is broken, that is,
when the stress intensity factor at this point achieves a certain limiting value kIC
characterizing this bond so that [14, 21–23]

σy = kIC√
2πε

as ε → 0 where y = 0, x = −b + ε. (3.4.2)

In the case under consideration when δ = 0, the constant kIC called the adhesion
toughness or bond toughness is expressed in terms of the specific adhesion bond
energy γ f m as follows:

16γ f m = κ1κ2 − 1

μ1(κ2 − 1)
k2
IC. (3.4.3)
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The solution of the Riemann problem (3.4.1), which is limited at point x = a and
at infinity but singular at point x = −b, has the form [12, 14, 21–23]

Φ2(z) = si
(

z − √
(z − a)(z + b)

)
− i B

√
z − a

z + b
. (3.4.4)

Here, a, b, and B are some real constants to be found. As z → ∞, the chosen
branches of the root functions behave as follows:

√
(z − a)(z + b) = z + 1

2
(b − a) − 1

8z
(a + b)2 + O

(
z−2

)
, (3.4.5)

√
z − a

z + b
= 1 + a + b

2z
+ O

(
z−2

)
. (3.4.6)

The tensile bond of adhesion at z = −b is broken, if the critical state described
by Eq. (3.4.2) is achieved due to the rolling. In terms of functionΦ2(z), it means that

Φ2(z) = kIC
2
√
2π(z + b)

as z → −b. (3.4.7)

Based on Eqs. (3.4.4) and (3.4.7), we can conclude that

2B
√
2π(a + b) = kIC. (3.4.8)

Also, from Eqs. (3.2.23), and (3.4.4) to (3.4.6) we can derive that

2B = s(a − b), πs(a + b)(3b − a) = 4N . (3.4.9)

The equation system, Eqs. (3.4.8) and (3.4.9), serves to determine constants
a, b, and B characterizing the effect of adhesion upon the process of rolling.

Due to Eqs. (3.2.2) and (3.4.4) the stresses on the contact area y = 0,−b < x < a
are equal to

σy = −2s
√

(a − x)(b + x) + 2B

√
a − x

b + x
, τxy = 0. (3.4.10)

The solution of the equation system, Eqs. (3.4.8) and (3.4.9), is reduced to the
following equation:

τ 2 − � τ 1/2 − 1 = 0. (3.4.11)

(

τ = a

L
+ b

L
, L = 2

√
N

πs
, � = 1

2
kIC

(π

s

)1/4
N−3/4

)

(3.4.12)
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The dimensionless number � determines the effect of adhesion like the Reynolds
number does the effect of viscosity in hydrodynamics.

In the case of a comparatively small effect of adhesion upon the rolling, we get

a = (1 + �)

√
N

πs
, b =

√
N

πs
as � � 1. (3.4.13)

Here are some values of the monotonously growing function τ = τ(�):

� 0 1.02 2.12 4.62 7.5
� 1 1.5 2 3 4

In the most important scenario, the process proceeds in three stages. Using the
CH rule, let us consider it in the case when the second cylinder is a lower half-space.

On the first stage, the elastic cylinder of radius R1 presses into the half-space of
another material by the normal force N so that a symmetrical dent forms along the
contact area (−b,+b) with its width 2b being determined by Eq. (3.4.13) at � = 0.
On the next stage, the thrust T being applied to the center of the cylinder is increasing
but having no effect until its value becomes equal to Nb/R1 so that the vector (T, N )

points at the front of the contact area x = +b.

On the third stage, the adhesion bond at x = −b is stretching on and the tensile
stress singularity is growing at this point while the thrust T increases, and the front
of the contact area x = +a moves in order to balance the normal force N . On this
stage, the process is stable so that the value of a slowly increases while T grows,
with the vector (T, N ) always pointing to the front x = +a according to the CH
rule.

When the growing stress singularity at x = −b achieves the critical value
defined by Eq. (3.4.8), the rolling begins. At this critical state, the equation sys-
tem, Eqs. (3.4.8) and (3.4.9), becomes valid, with the value of the critical thrust
being determined by the same CH rule T = aN/R1. Based on Eq. (3.4.13), for
small values of � the CH rule provides the following law of rolling:

T = (1 + �)
N 3/2

R1
√

πs
, Crr = (1 + �)

1

R1

√
N

πs
. (3.4.14)

This scenario plays only when, at first, load N increases while T = 0 and, then,
the thrust T grows, with the normal load being constant. For other loading paths, the
results will be different because this process is, evidently, path-dependent.
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3.5 An Elastic Ball Rolling on an Elastic Half-Space

Let us consider the problem of an elastic ball of radius R1 rolling on another elastic
ball of another elastic material of greater radius R2. When R2 = ∞ the latter is
an elastic half-space, and when R2 < 0 the latter is an infinite elastic space with a
spherical hole of radius |R2| > R1.

For this purpose, we can use Hertz’s solution for the static problem of an axially
symmetric contact of two elastic balls of different materials [7]:

w =
(

R1 + R2

R1R2

)1/3[3
4

N

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)]2/3

− R1 + R2

2R1R2
r2; (3.5.1)

σz = − 3N

2πa2

√

1 − r2

a2
(R1 � a, |R2| > R1 > 0); (3.5.2)

a3 = 3

4
N

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
R1R2

R1 + R2
. (3.5.3)

Here, r is the distance from the z-axis which is the axis of symmetry in this
problem, a is the radius of the contact area, N is the resultant force of pressure |σz|
on the contact area z = 0, r < a (here, shear stress is equal to zero), and w is the
sum of the z-components of the elastic displacements at the opposite points of the
contact of the ball surfaces.

Hertz’s solution is commonly used to study the impact of two elastic balls. We
will use it to study the equilibrium of two heavy elastic balls resting one on the other
in the vertical field of gravitation before rolling. The cases when R2 → ∞ or R2 < 0
are of most interest. They relate to the ball rolling on the surface of a half-space or
to the ball rolling on the surface of a spherical cavity in an elastic space.

Let us slowly increase the tangential thrust force T applied to the center of the
smaller ball of weight N . This force is perpendicular to the z-axis. If the vector
(T, N ) points inside the contact area, no motion occurs. In this case, there are no
substantial changes in the size of the contact area because T/N is very small.

However, based on the CH rule this ball starts on rolling when vector (T, N )

points to the circular front of the contact area so that Eq. (3.2.32) becomes valid.
From here, using Eqs. (3.5.3) and (3.1.1) we find the rolling resistance coefficient
and the law of rolling

Crr = T

N
= a

R1
= 1

R1

[
3

4
N

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
R1R2

R1 + R2

]1/3

. (3.5.4)

In the case of a ball rolling on a half-space, we get from here

Crr = T

N
= a

R1
=

[
3

4R2
1

N

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)]1/3

. (3.5.5)
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Using Eq. (3.5.5), we find, for example, that the rolling resistance coefficient
of hardened steel ball bearings on steel is equal to about 0.001–0.0015 within the
practical range of parameters, which is in excellent agreement with the known data
of the tests [2, 8].

3.6 An Elastic Torus Rolling on an Elastic Half-Space

Let us consider the contact problem of the elasticity theory of the pressure of an
elastic solid torus on an elastic half-space of another material. The torus surface is
formed by rotation of a circumference of radius r around an axis lying in the plane
of this circumference, but not intersecting the latter, so that the circumference center
forms another circumference of greater radius R > r . The center of the latter is the
torus center.

Let this solid torus press on the boundary of an elastic half-space z < 0 so that
the plane of the major circle of the torus is perpendicular to the half-space boundary
z = 0. The force N is applied to the torus center and directed perpendicular to the
boundary of the half-space (this “load on the wheel” can be transferred to the torus
via spokes or a connecting disk).

In the neighborhood of a small contact area, the torus surface coincides with the
surface of the following elliptic paraboloid:

z = x2

2(r + R)
+ y2

2r
. (3.6.1)

Here, the directions x and y and the corresponding principal curvature radii r + R
and r of this paraboloid coincide with the directions and principal curvature radii of
the torus at the initial contact point x = y = z = 0.

And so, the problem is reduced to Hertz’s problem of the contact of two different
elastic paraboloids [7], one of which is the lower half-space z < 0. According to
Hertz’s solution, the small contact area in this problem is the interior of the following
ellipse on the plane z = 0 :

x2

L2
+ y2

b2
= 1 (L > b). (3.6.2)

Here, 2L and 2b are the major and minor axes of the ellipse.
The stresses on the contact area are [7]

σz = − 3N

2πbL

√

1 − x2

L2
− y2

b2
, τxz = τyz = 0. (3.6.3)
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Here, the values of b and L are determined by the following equations:

(
1 − e2

) D(e)

B(e)
= r

R + r
; 1 − e2 = b2

L2
; (3.6.4)

L3 = 3

π

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
N D(e)(R + r). (3.6.5)

(The subscripts 1 and 2 refer to the torus and base materials, correspondingly.)
As a reminder, B(e) and D(e) are the following elliptic integrals:

B(e) =
π/2∫

0

cos2 ϕ
√
1 − e2 sin2 ϕ

dϕ, D(e) =
π/2∫

0

sin2 ϕ
√
1 − e2 sin2 ϕ

dϕ. (3.6.6)

Now, let us apply the thrust force T to the center of torus in the direction of the
major axis x and consider the problem of the rolling of the torus on the surface z = 0
of the elastic half-space of another material.

As long as the force T is sufficiently small so that vector (T, N ) points to some-
where inside the contact area, no rolling occurs. Based on the CH rule, when vector
(T, N ) points to the edge of the contact area at x = L , y = 0 the torus starts on
rolling.

And so, the law of rolling of an elastic torus on an elastic half-space of another
material says that the rolling resistance coefficient in this case is equal to

Crr = T

N
= L

R + r
= 1

R + r

[
3

π

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
N D(e)(R + r)

]1/3

.

(3.6.7)

Here, the function e = e(r/R) is determined by Eq. (3.6.4).
This law of rolling is valid as far as Hertz’s solution, Eqs. (3.6.3) to (3.6.5), is

valid. Its violation can be due to the local stick-and-slip zones on the contact area
studied in papers [24, 25]; see also Chap. 5 of the book.

3.7 A Rigid Cylinder Rolling on a Sticky Membrane

Let us study the problem of a rigid cylinder of radius R rolling on the horizontal
surface of a flat membrane shell, or film, tightly stretched in all directions by the
tension force γ which is equal to the product of the tensile stress in the shell and
the shell thickness. At first, we consider the static problem, with the force N per
unit length of the cylinder, e.g., its weight, being applied to its center in the vertical
direction. Let 2a be the width of a small contact area so that a � R.
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The force N is balanced by the film pressure on the contact area and by the tension
forces of adhesion applied to the edge of this area. From equilibrium equation of the
film γ d2w/dx2 = p, it follows that γ = pR because w = x2/(2R) on the contact
area −a < x < a where the shape of the film w = w(x) coincides with the shape of
the cylinder (p is the film pressure on the cylinder).

From the energy conservation law, it follows [24] that

γ (1 − cosβ) = �C (3.7.1)

Here, �C is the specific energy of adhesion of the film and cylinder materials, and
β is the angle between the film and the plane tangential to the cylinder at the edge
of the contact area. The value of �C can be controlled by special glues or lubricants.

For small β, we get from Eq. (3.7.1)

γβ2 = 2�C . (3.7.2)

And so, the balance of forces acting on the cylinder is written as follows:

N = 2γ (α − β). (3.7.3)

(

α = a

R
, β =

√
2�C

γ

)

. (3.7.4)

From Eqs. (3.7.3) and (3.7.4), it follows that

a = R

2γ

(
N + 2

√
2γ�C

)
. (3.7.5)

Now, let us apply the small thrust force T (per unit length of the cylinder) to the
cylinder center in the horizontal direction. It does not cause a rolling, if the vector
(T, N ) points to somewhere inside the contact area.

By the CH rule, the cylinder starts on rolling, when this vector points to the front
of the contact area so that based on Eq. (3.7.5) the law of rolling and the rolling
resistance coefficient are given by the following equations:

Crr = T

N
= a

R
= N

2γ
+

√
2�C

γ
. (3.7.6)

In the case if the adhesion can be ignored so that N 2 � 8γ�C , we can get
Crr = N/2γ where γ � N . In the opposite case, when the weight is supported by
the adhesion only so that N 2 � 8γ�C , we have Crr = √

2�C/γ .



3.8 A Rigid Ball Rolling on a Sticky Film 55

3.8 A Rigid Ball Rolling on a Sticky Film

Let us study the problem of a rigid ball of radius R rolling on a flat, sticky membrane,
or a film, tightly stretched by tension γ in all directions. Again, we need, at first, to
solve the corresponding static problem, with the force N , being applied to the ball
center (e.g., its weight). Let Orz be the cylindrical coordinate system, the z-axis
of which is the vertical coinciding with the axis of symmetry of the problem. The
contact area is inside a circle of small radius a � R.

The displacement w(r) of the film is described by the following equation:

γ

(
d2w

dr2
+ 1

r

dw

dr

)
= pθ(r). (3.8.1)

Here, θ(r) = 0 when r > a and θ(r) = 1 when r < a, and p is the pressure in the
contact area to be found.

From (3.8.1), we can find

w = C ln
r

a
when r > a, and w = p

4γ

(
r2 − a2

)
when r < a. (3.8.2)

Here, C is a constant to be found.
For r < a, the function w(r) coincides with the surface of the ball so that using

Eq. (3.8.2), we get from here

pR = 2γ. (3.8.3)

Similar to the problem in Sect. 3.7, because of the adhesion with the ball surface
the film makes up the angle β with the plane tangential to the ball at any point of the
front of the contact area at z = 0, r = a. This angle is determined by Eq. (3.8.1), or
by Eq. (3.8.2) for small β.

The force N , for example, the weight of the ball, is balanced by the film tension
so that:

N = 2πaγ (α − β) = 2πaγ

(
a

R
−

√
2�C

γ

)

; (3.8.4)

C = a(α − β). (3.8.5)

Using Eqs. (3.8.4), (3.8.5) and the CH rule, we find the radius of the contact area,
the law of rolling, and the rolling resistance coefficient:

Crr = T

N
= a

R
=

√
N

2πγ R
+ �C

2γ
+

√
�C

2γ
. (3.8.6)
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In the case of a negligibly small adhesion, when π R�C � N , we get a simpler
relation Crr = √

N/(2πγ R) from Eq. (3.8.6). In the opposite case of a very strong
adhesion, when π R�C � N , the formula Crr = √

2�C/γ is valid.
It should be kept in mind that the notion of membrane shell, or film, is rather about

the stress state in the shell than about its mechanical property. If tensile stresses in a
shell are much greater than bending stresses, the shell can be treated as a membrane,
even if it is made, for example, of the hardest steel.

3.9 A Rigid Torus Rolling on a Membrane Shell

Let us study the problem of a rigid torus rolling on a flat membrane shell, tightly
stretched by tension γ in all directions so that the size of the contact area is very
small as compared to the main radii r and R of the torus. In this case, the contact
problem for the torus is reduced to the contact problem for the elliptic paraboloid
given by Eq. (3.6.1), the main radii of curvature at the apex of this paraboloid being
equal to r and r + R.

And so, let us solve the contact problem for this rigid paraboloid pressing by its
apex onto the flat membrane shell tightly stretched by a very strong tension so that
the contact area is small compared to the minor radius of curvature at the apex [18].
We use the Oxyz coordinate system, with its origin being at the apex and the z-axis
being the symmetry line inside this paraboloid; see Eq. (3.6.1). Each cross section
z = const of the paraboloid is an ellipse, with its major axis lying on the x-axis. The
resistance force N is directed along the z-axis since the paraboloid presses down in
the opposite direction (no rolling so far!).

The purpose of our next calculation is to find the shape and size of the unknown
contact area D on the xy plane, which is evidently symmetrical with respect to the
x-axis and y-axis. The displacement w of the membrane shell satisfies the following
equation:

∂2w

∂x2
+ ∂2w

∂y2
= p

γ
θ. (3.9.1)

Here, p is the pressure on the paraboloid inside the domain D where θ = 1, while
θ = 0 outside the domain D.

Inside the contact area D, the displacement w coincides with z in Eq. (3.6.1).
Using Eqs. (3.6.1) and (3.9.1), we find

p = γ
2r + R

r(r + R)
(3.9.2)

Let us introduce the complex variable ξ = x + iy. The general solution of
Eq. (3.9.1) inside the domain D is
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w = Ref(ξ). (3.9.3)

Here, f (ξ) is the analytical function to be found.
The derivative of this function is

f ′(ξ) = ∂w

∂x
− i

∂w

∂y
. (3.9.4)

Functions ∂w/∂x and ∂w/∂y are continuous on the sought contourCD of the con-
tact area because the normal and tangential derivatives of themembrane displacement
on this contour should coincidewith the correspondingvalues of the paraboloid. From
here, using Eqs. (3.6.1) and (3.9.4) it is easy to derive the following equation of this
boundary value problem on the unknown contour CD

f ′(ξ) = x

r + R
− i

y

r
· (ξεCD) (3.9.5)

Let us apply the conformal mapping ξ = ω(ζ ) which converts the unknown
domain D into the exterior of the unit circle |ζ | > 1 on the parametric plane of the
complex variable ζ, with the x-axis being converted to the real axis on the ζ -plane.
According to the Riemann theorem, the analytical function ω(ζ ) is uniquely defined
by this way.

Since ω(ζ ) = x + iy, we can transform Eq. (3.9.5) into the following boundary
value problem for the exterior of the unit circle |ζ | > 1 on the parametric ζ -plane:

2r(r + R)F(ζ ) = (R + 2r)ω(ζ ); (|ζ | = 1) (3.9.6)

F(ζ ) = f ′(ω(ζ )) + R

2r(R + r)
ω(ζ ). (3.9.7)

And so, we arrived at the boundary value problem (3.9.6) for two unknown ana-
lytical functions ω(ζ ) and F(ζ ). Both have the first-order pole at infinity.

To solve this problem, let us apply themethod of functional equations [13, 15–17].
First, we continue Eq. (3.9.6) analytically from the unit circle onto thewhole ζ -plane.
As a result, we get the following functional equation in the ζ -plane

2r(r + R)F(ζ ) = (R + 2r)ω̄
(
ζ−1

)
. (3.9.8)

Let us show that this functional equation has the following exact solution:

ω(ζ ) = c0ζ + c1ζ
−1; (3.9.9)

2r(r + R)F(ζ ) = (R + 2r)
(
c1ζ + c0ζ

−1
)
. (3.9.10)

This solution satisfies Eq. (3.9.8) for any values of coefficients c0 and c1.



58 3 The Rolling

To determine these coefficients, let us use the behavior of the solution at infinity
where the function f ′(ξ) → 0.Hence, according toEqs. (3.9.7), (3.9.9), and (3.9.10),
we get

Rc0 = (R + 2r)c1. (3.9.11)

From the equilibrium equation of the shell at infinity, it follows that

f ′(ξ) = N

2πγ ξ
as ξ → ∞. (3.9.12)

Now, study the pole at ζ → 0 and eliminate the singularity in Eq. (3.9.7) using
Eqs. (3.9.9), (3.9.10), and (3.9.12). As a result, we get one more relation

(R + 2r)c0 = c1R + r(r + R)

πγ c0
N . (3.9.13)

From Eqs. (3.9.11) and (3.9.13), we can find that

c20 = R + 2r

4πγ
N , c1 = R

R + 2r
c0. (3.9.14)

And so, the conformal mapping is done by the following function

ω(ζ ) =
√

R + 2r

4πγ
N

(
ζ + R

R + 2r

1

ζ

)
. (3.9.15)

The displacement field of the membrane shell has the following shape:

∂w

∂x
− i

∂w

∂y
= 1

ζ

√
N

πγ (R + 2r)
. (3.9.16)

Equations (3.9.15) and (3.9.16) provide the parametric solution to the contact
problem of a heavy body lying on the membrane shell. The body can be a torus, a
paraboloid or any smooth symmetrical body with a small contact area.

As a matter of fact, this solution fits also for the hydrodynamic problem of a
heavy vessel on the surface of a liquid in the case of no wetting for small values of
the dimensionless number δR2/γ , where R is a specific dimension of the body, δ is
the specific weight of the liquid, and γ is the surface tension of the liquid.

From Eq. (3.9.15), it is easy to derive the following equation of the contour CD

of the contact area

x2

(R + r)2
+ y2

r2
= N

πγ (R + 2r)
. (3.9.17)
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And so, the contact area represents the ellipse which major radius is equal to

a = (R + r)

√
N

πγ (R + 2r)
. (3.9.18)

Now, let us consider the original problem of the torus rolling on the flat, tightly
stretched membrane shell under the action of the thrust force applied to the torus
center along the major axis of the ellipse on the contact area. Based on the CH rule,
the steady-state rolling takes place when the resultant force vector (T, N ) points at
the frontal edge x = a, y = z = 0 of the contact area. From here, using Eq. (3.9.18)
we get the law of rolling of the rigid torus on the flat membrane and the rolling
resistance coefficient

Crr = T

N
= a

R + r
=

√
N

πγ (R + 2r)
. (3.9.19)

The problem is solved.

3.10 A Cylinder Rolling on an Elastic Plate

Plates considered in this and next sections are assumed to be isotropic, elastic, thin,
of constant thickness, and to have a small lateral deflection w which should be less
than a few tenths of the plate thickness t . As distinct from membranes, plates carry
loads essentially by bending stresses.

Contact problems for plates have some peculiarities that often do not allow both
practitioners and mathematicians to solve or use them. For example, in the case of
the problem of a flat stamp, plates can carry a heavy stamp only by concentrated
forces applied at the edges of the stamp, with no load being carried inside flat sides.

Even worse, it can be proven that the contact problem of indentation of any heavy
parabolic cylinder onto an elastic plate has no solutions with a contact area, except
for two trivial ones. In the first solution, all weight is carried by concentrated forces at
the ends of the contact area, with the distance between the ends being undetermined.
In the second solution, all weight is carried by one contact point at the cylinder vertex
so that the zero thrust force can make the parabolic cylinder of any weight roll on the
plate, which is absurd. Figuratively speaking, plates “do not like parabolic cylinders
and flat stamps.”

Therefore, the simple solution of the contact problem given below is of principal
interest. The point is that the cross-sectional shape of the rolling cylinder on the
contact area should be replaced not by a parabola but by a more complicated figure
described by the following equation:
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y = x2

2R
+ x4

8R3
· (x � R) (3.10.1)

This follows from the exact equation of the cylinder surface

y = R

⎛

⎝1 −
√

1 − x2

R2

⎞

⎠. (3.10.2)

Equation (3.10.1) provides twofirst terms of the expansion of function y = y(x) in
Eq. (3.10.2) for small x/R so that we get amore precise, second-order approximation
of the cylinder of radius R in the contact area. In the contact problems of cylinders
on plates, it is insufficient to use only the first term of this equation like it was done
for solids and membranes.

Let us write down the equations of one-dimensional bending of flat plates:

q = D
dw4

dx4
, M = −D

d2w

dx2
, Q = −D

d3w

dx3
. (3.10.3)

Here, w(x) is the plate deflection; q, M and Q are the load, bending moment, and
transverse shear force; and D is equal to

D = 1

12
Et3

(
1 − ν2

)−1
(3.10.4)

Suppose the rigid cylinder of Eq. (3.10.1) presses onto the plate by the force N
per unit length of the cylinder so that a contact area of width 2a forms. We assume
that the y-axis is the symmetry line of the problem, and that R � a � t. The plate
deflection w = y(x) in the contact area −a < x < +a is determined by Eq. (3.10.1)
so that using the first equation in Eq. (3.10.3) we get the load on the plate

q = 3D/R3 (−a < x < a). (3.10.5)

From the equilibrium equation and Eq. (3.10.5), we find the width of the contact
area

a = N R3

6D
. (3.10.6)

Then, using the CH rule and Eq. (3.10.6) we derive the law of rolling and the
rolling resistance coefficient for a rigid cylinder of radius R rolling on an elastic
plate

Crr = T

N
= a

R
= N R2

6D
= 2N R2

(
1 − ν2

)

Et3
. (3.10.7)
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The elastic line of the plate outside the contact area can be found from the first
equation in Eq. (3.10.3):

w = − N

12D
x3 + x2

2R

(
1 + Na R

2D

)
− Na2

3D
x + wm · (x > a) (3.10.8)

Here, wm is defined by the boundary condition at the end support. At x = ±a,
the deflection w(x) and its first two derivatives are equal to the function y(x) and its
corresponding derivatives.

3.11 A Ball Rolling on an Elastic Plate

To solve the problem of a rigid ball of radius R rolling on an elastic plate, we apply
the approach of the previous section. To this purpose, we replace the ball by the
axially symmetric body which for small r/R approximates the shape of the ball
more accurately than any paraboloid

z = r2

2R
+ r4

8R3
. (3.11.1)

The axially symmetric problems of plate bending are described by the following
equation in terms of their lateral deflection w(r)

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]}
= q

D
. (3.11.2)

Since w(r) = z(r) in the contact area, using Eqs. (3.11.1) and (3.11.2) we find

q = 8D

R3
. (3.11.3)

In this case, the contact area is circular. Using Eq. (3.11.3) and the equilibrium
equation, we get the radius a of the contact area

a2 = N R3

8π D
= 3

(
1 − ν2

)

2π

N

E

(
R

t

)3

. (3.11.4)

By means of Eq. (3.11.4) and the CH rule, the law of the ball rolling on an elastic
plate and the rolling resistance coefficient can be written as follows:

Crr = T

N
= a

R
=

√
3
(
1 − ν2

)
N R

2π Et3
. (3.11.5)
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The lateral deflection of the plate outside the contact area can be found with the
help of Eq. (3.11.2) similar to the previous section. The homogeneous equation of
Eq. (3.11.2) has four particular solutions, namely, ln r, r2, r2 ln r and a constant.
Hence, the general solution of Eq. (3.11.2) can be written as their superposition

w = c1r
2 ln r + c2r

2 + c3 ln r + c4. (3.11.6)

Here, c1, c2, c3 and c4 are some constants. The first three of them are defined
by two boundary conditions at the edge of the contact area and by the equilibrium
equation. Constant c4 depends only on the support outside the contact area.

If the support is very far from the contact area, then based on Saint-Venant’s
principle, at the distance much greater than a, there exists the following intermediate
field corresponding to the concentrated force N at the center [21–23]:

w = − N

16π D

(
2r2 ln

r

c
+ c2 − r2

)
; (3.11.7)

Mr = D

(
d2w

dr2
+ ν

r

dw

dr

)
= N

4π

[
1 + (1 + ν) ln

r

c

]
; (3.11.8)

Qr = �
dw

dr
= N

2πr
, Mr − Mθ = 1 − ν

4π
N . (3.11.9)

Here, Mr , Mθ , and Qr are the corresponding bending moments and transverse
shear force (� is Laplace’s operator). The lateral deflection in Eq. (3.11.7) counts
from the support at r = c where it is assumed that dw/dr = 0.

3.12 A Rigid Torus Rolling on an Elastic Plate

In the case of a torus rolling on an elastic plate, it can be shown that, similar to more
simple problems in Sects. 3.10 and 3.11, it is insufficient to approximate the surface
of the torus by the elliptic paraboloid of Eq. (3.6.1) which represents only the first-
order expansion of the torus surface equation at and near the contact area. Although
we can construct two mathematical solutions for this first-order approximation, they
do not satisfy some evident physical requirements.

In the first solution, with the one-point contact at the base of the rolling torus,
the torus of any weight can be rolled on any elastic plate by zero thrust force, which
is absurd. In the second solution, the load-free contact area represents an ellipse of
some constant eccentricity but of any undetermined dimension, with theweight being
carried by concentrated transverse shear forces distributed along the contour of the
ellipse [18, 20]. The latter can be proven by a simple dimensional consideration.

And so, to get the physically reasonable solution of this problem of rolling we
should use the following second-order approximation of the torus surface at and near
the contact area
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z = x2

2(R + r)
+ y2

2r
+ x4

8(R + r)3
+ y4

8r3
. (3.12.1)

Here, evidently, the fourth-order terms are much less than the second-order terms
so that this change of the surface of the ellipsoidal paraboloid is very small.

The lateral deflection of the plate should satisfy the biharmonic equation

�2w = q/D. (3.12.2)

Therefore, inside the contact area where z(x) = w(x) the load is equal to

q = 3D

[
1

r3
+ 1

(r + R)3

]
. (3.12.3)

And so, a very small change in the shape of the pressing body caused a very
significant effect, namely a redistribution of the bearing load from the concentrated
transverse shear force at the edge of the contact area to the constant load throughout all
contact area. This is, again, a bad signal for the solution with concentrated transverse
shear forces—it suffers a big change by a small variation of boundary conditions
and is easily “washed away” by the continuous solution [18, 20–23]. Such unstable
solutions are called incorrect and usually ignored. It is the way we follow as well.

Unfortunately, the exact solution of the contact problem for a body described by
Eq. (3.12.1) is very complicated and cumbersome for practice. Instead, we apply an
approximate solution which is much simpler and easier to use.

For this purpose, we approximate the sought contour of the contact area by an
ellipse which is coaxial and similar to the basic ellipse defined by the first two terms
of Eq. (3.12.1) and which supports weight N of the torus by the distributed load of
Eq. (3.12.2). As a result, we get the following two equations:

πabq = N ; (3.12.4)

a

b
=

√
R + r

r
. (3.12.5)

Here, a and b are, respectively, the major and minor radii of the sought ellipse
(πab is its area).

Using Eqs. (3.12.4) and (3.12.5), we find the major radius of the contact area that
determines the rolling law of the torus

a =
(

N

πq

)1/2(
1 + R

r

)1/4

. (3.12.6)

Substituting q here by Eq. (3.12.2), we find the major radius of the contact area
in terms of original data
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a =
(

N

3π D

)1/2(
1 + R

r

)1/4[ 1

r3
+ 1

(r + R)3

]−1/2

. (3.12.7)

From here, it follows that the law of rolling of a torus on a plate and the rolling
resistance coefficient can be written as follows:

Crr = T

N
= a

R + r
=

(
N

3π D

)1/2 r5/4(r + R)3/4
√

r3 + (r + R)3
. (3.12.8)

Here, D is given by Eq. (3.10.4) in terms of Young’s modulus, Poisson’s ratio,
and the thickness of the plate. As a reminder, r and R are the minor and major radii
of the torus.

Conclusion. The exact laws of rolling and the accurate rolling resistance coefficients
so much needed in industries and for so long gained only in very expensive tests
have gotten now known for all basic round bodies. This knowledge should become
common to all professionals and graduate students of mechanical and automotive
engineering. The present chapter can serve as a semester course for this purpose.
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Chapter 4
The Theory of Flight

Abstract The basic equations of gas dynamics are written in the form of invariant
integrals describing the laws of conservation. The Kutta–Joukowski equation and the
lift force of wings were derived from Joukowski’ profiles using the invariant integrals
and complex variables. The optimal shape of airfoils is suggested and calculated.
Method of discrete vortices applied to turbulent flows with large Reynolds number
appeared to be useful for the characterization of hurricanes. This chapter may be of
special interest for aerodynamics and meteorology.

Both the fluid dynamics and the theory of functions of a complex variable originated
in the works of Leonhard Euler almost three centuries ago. However, he proved that
the drag and lift of a bodymoving in a perfect (inviscid) fluid equals zero, and so, this
theory seemed to be useless for a long time. It is only in the beginning of the twentieth
century that became clear that vortices and separated flows play the major part in
the creation of the forces on the body. Because the fluid viscosity transferred these
forces on the body and triggered shooting vortices, most of the twentieth century
efforts were concentrated on the attempts to solve the Navier–Stokes equations for
viscous fluids. Today, it is clear that the Navier–Stokes equations do not have a
reasonable solution for large Reynolds numbers, most important in applications, and
for any practical purpose of calculation of drag/lift forces, the turbulent flow can be
effectively described by some system of vortices or vortex sheets in a perfect fluid.

The simplest version of the method of discrete vortices is given below as well as
the application of the invariant integrals of gas dynamics to the theory of flight. The
chapter is based on this author’s publications [4–13].

4.1 Introduction

In this section, we provide the basic information about singular integral equations
and the Riemann problem used in this book.

Cauchy integral is the complex function φ(z) of a complex variable z of the
following shape
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φ(z) = 1

2π i

∫

L

ϕ(τ)dτ

τ − z
, (τεL). (4.1.1)

Here, L is a contour in the z-plane and ϕ(τ) is a complex function.
The function of a complex variable is said to be analytic at a point if it is differ-

entiable any number of times and expandable into a convergent power series at the
point. The Cauchy integral in Eq. (4.1.1) provides a function φ(z) that is analytic
at any point z outside L and discontinuous on L, that is, φ(z) tends to different val-
ues φ+(t) and φ−(t) when z tends to the same point t on L from the left-hand and
right-hand side of L, respectively, if one goes along L.

A singular integral is the complex function φ(t) of a complex variable t defined
by the divergent improper integral

1

2π i

∫

L

ϕ(τ)

τ − t
dτ, (tεL), (4.1.2)

understood in the meaning of the Cauchy Principal Value as

φ(t) = 1

2π i
P.V.

∫

L

ϕ(τ)dτ

τ − t
= lim

1

2π i

∫

Lε

ϕ(τ )dτ

τ − t
, (ε → 0, tεL , τεL). (4.1.3)

Here, Lε is L without its vicinity of z = t cut off by a circle of a small radius ∈
centered at z = t . For example, calculating the improper integral

b∫

a

dx

x − c
= lim

⎛
⎝−

c−∈1∫

a

dx

c − x
+

b∫

c+∈2

dx

x − c

⎞
⎠ = ln

b − c

c − a
+ lim

∈1

∈2
(4.1.4)

where ∈1→ 0, ∈2→ 0 and a < c < b, we get (∈1=∈2=∈)

P.V.

b∫

a

dx

x − c
= ln

b − c

c − a
. (4.1.5)

Hence, the improper integral does not exist (diverges) because the limit depends
on the way of vanishing ∈1 and ∈2. However, the Cauchy principal value of this
singular integral exists and is determined by Eq. (4.1.5).

Still in 1873, Sokhotsky derived the following basic equations rederived by
Plemelj in 1908:

φ+(t) − φ−(t) = ϕ(t), t ∈ L; (4.1.6)
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φ+(t) + φ−(t) = P.V.
1

π i

∫

L

ϕ(τ)dτ

τ − t
. (4.1.7)

Sokhotsky equations allow mutual connection of the following famous boundary
value problems:
Riemann Problem:

φ+(t) = G(t)φ−(t) + g(t), t ∈ L . (4.1.8)

Here, G(t) and g(t) are some given functions, and φ+(z) and φ−(z) are analytic
functions required to be found (in the case of unclosed curve L, it is one function
that suffers a discontinuity on the line L).
Hilbert Problem:

a(s)u(s) + b(s)v(s) = c(s). (4.1.9)

Here, s is the length of arc on L, a(s) and b(s) are some given real functions, and
u(s) and b(s) are the real and imaginary parts of an analytic function required to be
found.
Singular Integral Equation Problem (with a Cauchy kernel):

d(t)ϕ(t) + 1

π i
P.V.

∫

L

M(t, τ )

τ − t
ϕ(τ)dτ = g(t), t ∈ L . (4.1.10)

Here, d(t), g(t) and M(t, τ ) are some given complex functions, and ϕ(t) is a
sought complex function.
Singular Integral Equation Problem (with a Hilbert kernel):

a(s)u(s) − 1

2π
b(s)

2π∫

0

u(α) cot
α − s

2
dα = c(s). (4.1.11)

All these equations can be reduced one to another—e.g., Eq. (4.1.11) to Eq. (4.1.9)
in the same designations.

Poincare, Hilbert, andNoether reduced these equations to Fredholm integral equa-
tion while Hilbert, Plemelj, and Carleman found explicit solutions to some particular
cases of these problems. In 1941, Gakhov gave the full explicit solution of the prob-
lems as formulated in Eqs. (4.1.8)–(4.1.11). Similar problems for a system of singular
integral equations reduced to the matrix Riemann problem are not solved, as yet, in
explicit form, except for some particular cases found by Gakhov, Khrapkov, and this
author.

Carleman’s singular integral equation. As an illustration of the solution method,
let us consider Carleman’s singular integral equation
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μϕ(x) + λ

π

1∫

0

ϕ(τ)dτ

τ − x
= g(x), (0 < x < 1). (4.1.12)

Here, μ and λ are some constants, g(x) is a known function, and ϕ(x) is the
function required to be found (the sign P.V. before the integral is omitted as usual).

Let us introduce the Cauchy function φ(z) as follows

φ(z) = 1

2π i

1∫

0

ϕ(τ)dτ

τ − z
. (4.1.13)

It is analytic outside the cut along the segment (0, 1) of the real axis on the complex
z-plane. On this segment, φ(z) suffers a discontinuity.

Using Sokhotsky relations, Eqs. (4.1.6) and (4.1.7), we reduce Carleman’s equa-
tion, Eq. (4.1.12), to the following Riemann problem

φ+(x) + mφ−(x) = g(x)/(μ + iλ), (0 < x < 1). (4.1.14)

m = −μ − iλ

μ + iλ
= ei	, 	 = π − 2 arctan

λ

μ
, (0 < 	 < π). (4.1.15)

First, let us find an auxiliary (canonical) solution X (z) to the problem for the case
where g(x) = 0 and m is an arbitrary complex number:

X+(x) + m X−(x) = 0, (0 < x < 1). (4.1.16)

By knowing the properties of the power-law functions of a complex variable, it is
easy to obtain a solution to Eq. (4.1.16) in the form

X (z) = zδ(z − 1)1−δ, (4.1.17)

δ = 1

2
− 1

2π i
lnm,

(
lim

X (z)

z
= 1 as z → ∞

)
. (4.1.18)

Function X (z) suffers a discontinuity on the cut (0, 1) of the complex z-plane
because the argument of X (z) equals π i(1 − δ) on the upper bank of the cut and
−π i(1 − δ) on the lower bank of the cut.

In the case of Carleman’s integral equation, due to Eqs. (4.1.15) and (4.1.18), the
constant δ is real and equal to

δ = 1

2
− 	

2π
= 1

π
arctan

λ

μ
. (4.1.19)
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However, in more complicated problems of the theory of elasticity, this constant
is usually a complex number, see, e.g., Sect. 3.1.

Using Eqs. (4.1.16) and (4.1.17), the Riemann problem of Eq. (4.1.14) can be
written as follows

(
φ

X

)+
−

(
φ

X

)−
= g(x)

(μ + iλ)X+(x)
, 0 < x < 1. (4.1.20)

From physical consideration, it is important to specify the behavior of the solution
near the ends x = 0 and x = 1. Function F(z)

F(z) = φ(z)

X (z)
− 1

2π i(μ + iλ)

1∫

0

g(τ )dτ

X+(τ )(τ − z)
(4.1.21)

in view of Eq. (4.1.6) will satisfy the condition equation

F+(x) = F−(x), 0 < x < 1. (4.1.22)

Hence, F(z) is analytic everywhere in the z-plane with the possible exception
of singular points z = 0 and z = 1 where F(z) can have poles, dependent on
the specified solution behavior at these points. For example, if the only integrable
singularities of the solution are physically permitted, these poles are simple; then,
according to the Liouville theorem, we obtain

F(z) = C1

z
+ C2

z − 1
, (4.1.23)

where C1 and C2 are some constants.
Considering Eqs. (4.1.21) and (4.1.23), we obtain the solution in the form

φ(z) = X (z)

2π i(μ + iλ)

1∫

0

g(τ )dτ

X+(τ )(τ − z)
+ X (z)

(
C1

z
+ C2

z − 1

)
, (4.1.24)

where

C1 + C2 = 1

2π i(μ + iλ)

1∫

0

g(τ )dτ

X+(τ )
. (4.1.25)

Equation (4.1.25) is stipulated by the fact that φ(z) → 0 as z → ∞ according to
the definition of φ(z) by Eq. (4.1.13).

The sought solution ϕ(x) of Carleman’s equation is given by Eqs. (4.1.24),
(4.1.25), and (4.1.17), and by the Sohotsky relation, Eq. (4.1.7).
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From this analysis, it follows also that, when g(x) = 0, Carleman’s integral
equation, Eq. (4.1.12), can have many solutions of the class

ϕ(x) = φ+ − φ− where φ(z) = X (z)P

(
z,

1

z
,

1

z − 1

)
. (4.1.26)

Here, P

(
z,

1

z
,

1

z − 1

)
is a polynomial function of its arguments which can be

determined only by specific physical requirements.

4.2 Invariant Integrals of Gas Dynamics

Let us study the irrotational steady polytropic flow of an inviscid compressible gas.
In this case, the governing equations of gas dynamics can be written in the form of
the following invariant integrals [5]:

∮

S

ρvi nidS = 0, (i = 1, 2, 3), (4.2.1)

Fk =
∮

S

(ρvkvi ni + pnk)dS, (i, k = 1, 2, 3). (4.2.2)

where

p/p∞ = (ρ/ρ∞)κ . (4.2.3)

Here, ρ and p are the density and pressure of gas, vi are the Cartesian components
of gas velocity, ρ∞ and p∞ are the density and pressure of unperturbed gas flow, κ
is the polytrope coefficient equal to the ratio of specific heat capacities (cp/cV ) in
the case of adiabatic processes, S is an arbitrary closed surface in gas, ni are outer
unit normal components to S, and Fk are the Cartesian components of the equivalent
outer force applied to bodies or singularities inside S. The forces Fk are equal to zero
if there are no field singularities (e.g., vortices) or shock waves inside S.

Equation (4.2.1) is the mass conservation law. Equation (4.2.2) can be considered
as both the energy or momentum conservation law. Equation (4.2.3) is valid for a
locally polytropic (e.g., adiabatic) process. When there is only gas and no bodies
inside S, by applying the divergence theorem to Eqs. (4.2.1) and (4.2.2), one can
easily derive the differential equation system of gas dynamics. When there is a body
inside S, using Eq. (4.2.2) allows computation of the drag and lift forces acting upon
the body. Because of invariance property, the S can be chosen in any way convenient
for calculation.
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As an example, let us find the forces of lift and drag acting upon a body of finite
dimensions moving with a subsonic speed in a gas that is at rest at infinity. Suppose
there are no vortices and sources anywhere in the flow. In this case, the perturbed
flow at infinity has an order

	ρ = O
(
r−3

)
, 	p = O

(
r−3

)
and 	vi = O

(
r−2

)
. (4.2.4)

Here, r is the distance from the body.
Using the invariance of the integral of Eq. (4.2.2), let us move the integration

surface S to infinity. Then, from Eqs. (4.2.2) and (4.2.4), it follows that Fk = 0. This
is the famous Euler paradox. It embarrassed scientists for more than a century before
they understood the role of vortices as carriers of lift and drag. The use of sources
and their thrust forces led to the advent of rocketry and jets.

4.3 Lift Force of a Thin Aerofoil

Let us consider the two-dimensional problem of a thin aerofoil moving in a gas. This
is an important stage of studies of smooth profiles of aircraft real wings, see Sect. 1.4
of this book for more detail. Engineering applications require the minimum possible
perturbations of gas by a moving aerofoil, or maximum lift and minimum drag. The
latter is provided by a thin-shaped profile close to a flat, infinitely thin plate moving
with a small angle of attack.

In this case, we designate:

v1 = V (1 + ū1), v2 = V ū2, v3 = 0,

p = p∞(1 + p̄), ρ = ρ∞(1 + ρ̄), (4.3.1)

where the dimensionless perturbed quantities are small:

ū1 � 1, ū2 � 1, p̄ � 1, ρ̄ � 1. (4.3.2)

Here, p∞, ρ∞ and V are the pressure, density, and velocity of unperturbed gas
flow at infinity with respect to the aerofoil (the gas velocity direction at infinity
coincides with the direction of the x1-axis).

Substituting the corresponding quantities in Eqs. (4.2.1)–(4.2.3) by Eq. (4.3.1)
and omitting higher-order terms, we get

∮

L

ūi nidL = M2
∞

∮

L

ū1n1dL , (i = 1, 2), (4.3.3)
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F2 = ρ∞V 2
∮

L

(ū2n1 − ū1n2)dL , (4.3.4)

p̄ = κρ̄ = −κ M2
∞ū1, F1 = 0, ρ̄ = −M2

∞ū1.(
M∞ = U/c∞, c2∞ = κp∞/ρ∞

)
(4.3.5)

Here, M∞ and c∞ are the Mach number and sound speed of unperturbed gas
flow at infinity, L is an arbitrary closed contour in gas, and F1 and F2 are the
drag and lift forces acting upon a thin aerofoil. The equation ρ = −M2∞ū1 is the
Cauchy–Bernoulli equation in this case.

Equations (4.3.3)–(4.3.5) provide the gas dynamics equation system that holds for
an arbitrary body at a sufficient large distance from it or for very thin aerofoils in the
entire flow domain. Using the divergence theorem in the integrals of Eqs. (4.3.3) and
(4.3.4) along a contour encompassing only fluid domain, we arrive at the following
differential equation system:

(
1 − M2

∞
)∂ ū1

∂x1
+ ∂ ū2

∂x2
= 0,

∂ ū1

∂x2
− ∂ ū2

∂x1
= 0. (4.3.6)

The general solution of this system can be written as

u1 = ReW ′(z), u2 = −
√
1 − M2∞ImW ′(z), (4.3.7)

where

z = x1 + i x2
√
1 − M2∞. (4.3.8)

Here, W ′(z) is an analytic function in the flow domain. It behaves at infinity as

W ′(z) = �i

2π z
, (z → ∞). (4.3.9)

Here, � is the circulation of the flow that should be found.
Let us write the aerofoil contour L equation as follows

L : x2 = −x1 tan α + f±(x1), 0 < x1 < c. (4.3.10)

Here, the functions f+(x) and f−(x) describe the upper and lower sides of the
aerofoil which contour is close to the straight linear segment of length c (the chord
of the aerofoil), inclined to the x1-axis with angle α (the angle of attack), and issuing
the coordinate origin. The angle of attack is positive when it counts clockwise from
the direction of the unperturbed flow velocity which coincides with the direction of
the x1-axis.
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The condition of non-penetration on the aerofoil contour means that the normal
component of the fluid velocity equals zero on L

v2 = v1 tan ϕ where tan ϕ = x ′
2(x1) = − tan α + f ′

±(x1). (4.3.11)

Using Eqs. (4.3.6)–(4.3.8) and (4.3.1), the boundary condition, Eq. (4.3.11), takes
the following form on L

−
√
1 − M2∞ImW ′(z) = V

[
1 + ReW ′(z)

][
f ′
± − tan α

]
. (4.3.12)

In view of α � 1 and Eq. (4.3.2) for thin profiles, the boundary condition of
Eq. (4.3.12) can be simplified and held on the cut (0, c) along the x1-axis. Hence,
we get

ImW ′(z) = V
[
α − f ′

±(x1)
]
/

√
1 − M2∞ as x2 = ±0, 0 < x1 < c. (4.3.13)

Using this boundary condition, it is required to find W ′(z) that is analytic outside
the cut (0, c) of the real axis and vanishes at infinity according to Eq. (4.3.9).

Let us introduce new functions �(z) and �(z):

�(z) = 1

2

[
W ′(z) + W ′(z)

]
,

�(z) = 1

2

[
W ′(z) − W ′(z)

]
. (4.3.14)

Here,

W ′(z) = W ′(z̄). (4.3.15)

It is evident that z̄ → x1 − i0 when z → x1 + i0. The functions �(z) and �(z)
are analytic outside the same cut on the z-plane. In addition, at x2 = 0 and x1 < 0
or x1 > c, we get:

Ψ (x1) = ReW ′(x1), that is Im�(x1) = 0; (4.3.16)

Ω(x1) = iImW ′(x1), that is Re�(x1) = 0. (4.3.17)

According to Eqs. (4.3.13) and (4.3.14), at x2 = 0 and 0 < x1 < c, we have:

Im�±(x1) = ∓1

2
V

[
f ′
+(x1) − f ′

−(x1)
]
/

√
1 − M2∞, (4.3.18)

Im�±(x1) = V

[
α − 1

2
f ′
+(x1) − 1

2
f ′
−(x1)

]
/

√
1 − M2∞. (4.3.19)
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Equations (4.3.16) and (4.3.18) represent the classic Dirichlet problem for the
upper or lower half-plane of the complex variable z = x1+i x2

√
1 − M2∞. Its solution

vanishing at infinity is:

�(z) = − V

2π
√
1 − M2∞

c∫

0

f ′+(t) − f ′−(t)

t − z
dt. (4.3.20)

It is easy to verify this solution using the Sokhotsky relations, Eqs. (4.1.6) and
(4.1.7).

The mixed problem of Eqs. (4.3.17) and (4.3.19) is reduced to another Dirichlet
problem for the function �(z)X (z) where

X (z) =
√

z − c

z
, X (z) = 1 − c

2z
as z → ∞. (4.3.21)

And so, we can find

�(z) = V X (z)

2π
√
1 − M2∞

c∫

0

2α − f ′+(t) − f ′−(t)

X+(t)(t − z)
dt. (4.3.22)

According to Eq. (4.3.14), we have

W ′(z) = �(z) + �(z), (4.3.23)

so that using Eqs. (4.3.20) and (4.3.22), we get the sought solution

W ′(z) = − V

2π
√
1 − M2∞

c∫

0

f ′+(t) − f ′−(t)

t − z
dt

+ V X (z)

2π
√
1 − M2∞

c∫

0

2α − f ′+(t) − f ′−(t)

X+(t)(t − z)
dt. (4.3.24)

It vanishes at infinity and is limited at the rear end of the profile owing to the
trailing vortex, since it is required by the Joukowski theory.

This solution has a peculiarity caused by the linearization of the initial problem,
namely it has a sink singularity at the frontal point z = 0 of the profile and a source
of the same intensity at infinity; the first one produces some thrust while the other
the drag of the same value so that the Euler–Bernoulli paradox of zero drag holds.

From Eq. (4.3.24) and the condition at infinity, Eq. (4.3.9), it follows that the
circulation � of thin profiles required by the Joukowski rule is equal to

� = V√
1 − M2∞

c∫

0

2α − f ′+(t) − f ′−(t)

|X (t)| dt. (4.3.25)
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In the limiting particular case of a flat aerofoil of a very small thickness, when
f ′+(t) = f ′−(t) = 0, we get from Eq. (4.3.25)

� = 2αcV√
1 − M2∞

1∫

0

√
t

1 − t
dt = παcV√

1 − M2∞
. (4.3.26)

Paticularly, we have � = παcV when M∞ = 0 (compare with the corresponding
exact solution� = −πcU sin α for incompressible fluid, Eq. (1.4.21), withU = −V
in this case).

Thus,we proved the Prandtl–Glauert law of similarity, according towhich the val-
ues of�, u1, p̄ and ρ̄ of the subsonic flight are directly proportional to

(
1 − M2∞

)−1/2
.

This law allows one to obtain important information using experimental data for low-
speed wings when the air behaves like an incompressible fluid. The Ackeret–Buse-
man law extends this rule for supersonic speeds, as the direct proportionality to(
M2∞ − 1

)−1/2
. However, both laws do not work for transonic velocities.

By calculating the lift of a wing, we should take into account the span s of the wing
and its shape in the plan view. The x3-coordinate will contract, like the x2-coordinate
in the 2D consideration, proportionally to

√
1 − M2∞ because instead of the wave

equation equivalent to Eq. (4.3.6), we have for the finite span:

(
1 − M2

∞
)∂2ϕ

∂x2
1

+ ∂2ϕ

∂x2
2

+ ∂2ϕ

∂x2
3

= 0 and ūi = ∂ϕ

∂xi
, (i = 1, 2, 3). (4.3.27)

Therefore, the lift of thewing is directly proportional to
(
1 − M2∞

)−1
. In particular,

for the thin flat wing of the rectangular shape in the plan view with the chord c and
span s, the lift is equal to (Fig. 4.1)

F2 = παscρ∞V 2

1 − M2∞
. (4.3.28)

For the thin flat wing of the triangular shape in plan, with the maximum chord c
and the maximum span s, the lift is twice less (Fig. 4.1).

Fig. 4.1 Triangular and rectangular wings in the plan view



78 4 The Theory of Flight

This theory of N. E. Joukowsky is well confirmed by practice. It is important to
emphasize that it singles out one of many possible mathematical solutions based just
on some common sense.

4.4 Optimal Aerofoil Problem

The lift of a thin aerofoil increases when the flight speed grows until the local Mach
number achieves 1 at a critical point on the upper side of the aerofoil. This occurs at
a critical Mach number M∞ = M∗ < 1. If M∞ > M∗, a local supersonic zone and
local shock waves develop near the critical point. At this regime, the drag is sharply
increased.

If a moving body is “well-streamlined,” like a thin plate moving with a very
small angle of attack α, so that there are no separation of a boundary layer and no
formation of drag vortices in the fluid, the drag is defined solely by viscous friction
in the boundary layer. For example, in the case of a thin plate, the dimensionless
coefficients of drag D and lift F2 are equal to:

cL = F2

1

2
Aρ∞V 2

= 2πα

1 − M2∞
, cD = D

1

2
Aρ∞V 2

= 2.66

√
ν

aV
,

(
M∞ = V

c∞

)
.

(4.4.1)

Here, ν is the kinematic viscosity of the fluid, a and A are the width and area of
the plate, and V is the speed of the plate.

Thus, when the flight speed grows, the coefficient of lift is increased and the
coefficient of drag is decreased. Hence, for every thin aerofoil, there exists a certain
optimal flight speed before the drag vortices separate from the aerofoil or local shock
waves form. From here, it follows that the optimal aerofoil shape should provide for
a maximum flight speed without local shock waves and drag vortices separation.

The greater is the critical Mach number, the closer is the aerofoil to the perfect
design. In the limit, the greatest critical Mach number is achieved, if the local sonic
speed in the air flow is simultaneously achieved at all points of the upper side of the
profile so that it becomes critical as a whole. It is clear that we could not achieve
more in this direction. And so, we can call this profile optimal [4, 5].

There are three main requirements to an optimal aerofoil:

1. The tail of the aerofoil should be a trailing edge, i.e., separation locus of a vortex
sheet. To achieve this aim at different regimes of flight, the tail part should be a
controlled hinged flap with a sharp cusped end.

2. The nose of the aerofoil should coincide with the stagnation point and be sharply
cusped, which helps localize some problems connected with large velocity gra-
dients and separation of drag vortices. There should be no other stagnation points
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different from the nose. To achieve this aim at different regimes of flight, the nose
part should be a controlled hinged flap with a sharp cusped spike.

3. The upper side of the middle part of the aerofoil should provide for one and the
same pressure at all the points at a virtual velocity of flight, in order to maximize
the critical Mach number at this flight regime.

A sketch of the optimal aerofoil is shown in Fig. 4.2. One and same streamline
doubles at the nose and emerges at the tail of the optimal aerofoil.

Let us formulate the problem of an optimal aerofoil in this approach for thin
profiles. This is a mathematical problem with an unknown boundary requested to be
found in the process of a solution. In this case, the unknown boundary is the upper
side of the profile where the additional boundary value condition p = p0 = const
according to Eqs. (4.3.2) and (4.3.5) can be written as

ū1 = u∗ where u∗ = p∞ − p0

κp∞M2∞
. (4.4.2)

Constant u∗ or p0 should be chosen from additional physical and commercial
considerations (so that 1 + u∗ is close to c/V ). For passenger jets, they should
correspond to the height of the flight at the cruising speed where most of the fuel
is spent. Besides, the boundary condition of non-penetration holds along the entire
surface of the aerofoil. It means that on the upper arc of uniform pressure being
sought, two boundary condition equations have to be satisfied.

Using Eq. (4.4.2) and a consideration analogous to that used for deriving
Eq. (4.3.13), we can get the corresponding boundary value problem of an optimal
aerofoil for the analytical function W ′(z):

Upper side of nose flap:

z = x1 + i0, 0 < x1 < εna : ImW ′(z) = αn − f ′
n+(x1)√

1 − M2∞
; (4.4.3)

Upper side of middle part of aerofoil:

z = x1 + i0, εna < x1 < a(1 − εt ) : ReW ′(z) = u∗; (4.4.4)

Fig. 4.2 Sketch of an optimal airfoil having a nose flap and a tail flap. Pressure is uniform along
the upper middle part of the airfoil. One and same streamline doubles at the nose and trails from
the tail of the airfoil
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Upper side of tail flap:

z = x1 + i0, a(1 − εt ) < x1 < a : ImW ′(z) = αt − f ′
t+(x1)√

1 − M2∞
; (4.4.5)

Lower side of nose flap:

z = x1 − i0, 0 < x1 < εna : ImW ′(z) = αn − f ′
n−(x1)√

1 − M2∞
; (4.4.6)

Lower side of middle part of aerofoil:

z = x1 − i0, εna < x1 < a(1 − εt ) : ImW ′(z) = αm − f ′
m(x1)√

1 − M2∞
; (4.4.7)

Lower side of tail flap:

z = x1 − i0, a(1 − εt ) < x1 < a : ImW ′(z) = αt − f ′
t−(x1)√

1 − M2∞
. (4.4.8)

Here, the functions f ′
n+(x1), f ′

n−(x1), f ′
m(x1) and f ′

t−(x1) and the constants
εn, εt , αn, αm andαt are assumed to be given. They can be used as fitting param-
eters in the search for a better design.

This mixed problem, Eqs. (4.4.3)–(4.4.8), is a particular case of the general Rie-
mann–Hilbert problem for any number of cuts along one and same straight line in the
complex plane, which was solved in an explicit form [6, 9, 10]. But in the case of one
cut, this problem can also be solved by the traditional method using the conformal
mapping onto the half-plane or the unit circle exterior.

As an example, using the direct method [6, 9, 10], we provide the solution result
to the problem, Eqs. (4.4.3)–(4.4.8), only in the particular case when both the nose
and tail flaps are not available, that is when εn = εt = 0:

W ′(z) = u∗ − u∗√
2

[
eπ i/4X (z) + e−π i/4X−1(z)

]

+ 1

2π i
√
1 − M2∞

a∫

0

[
X (z)

X+(x)
− X+(x)

X (z)

]
αm − f ′

m(x)

x − z
dx . (4.4.9)

Here,

X (z) =
(

z − a

z

)1/4

where lim X (z) = 1 as z → ∞. (4.4.10)
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The function W ′(z) is finite at the nose z = 0 and the tail z = a, if the following
equations are met:

a∫

0

αm − f ′
m(x)

x3/4(a − x)1/4
dx = πu∗

√
2
(
1 − M2∞

)
.

a∫

0

αm − f ′
m(x)

x1/4(a − x)3/4
dx = πu∗

√
2
(
1 − M2∞

)
. (4.4.11)

These condition equations should be satisfied during the optimal regime of the
virtual flight.

The optimal shape of the upper middle part of the aerofoil is computed from the
non-penetration condition which according to Eqs. (4.3.1) and (4.3.7) can be written
as follows

dy

dx1
= v2

v1
= ū2

1 + ū1
= −

√
1 − M2∞ImW ′(z)
1 + ReW ′(z)

= −
√
1 − M2∞ImW ′(z)

1 + u∗
. (4.4.12)

In the particular case of no tail and nose flaps, we can obtain the upper boundary
of the optimal aerofoil in the optimal flight regime from Eqs. (4.4.9) and (4.4.12):

y = 1

1 + u∗

x1∫

0

{
F(x) + u∗√

2

√
1 − M2∞

[(
a − x

x

)1/4

−
(

x

a − x

)1/4
]}

dx,

F(x) = 1

2π

a∫

0

√
x(a − t) − √

t (a − x)

[t (a − t)]1/4[x(a − x)]1/4
· f ′

m(t) − αm

t − x
dt. (4.4.13)

Evidently, the optimal properties of each optimal design can be displayed only
under some terms projected beforehand.

4.5 Method of Discrete Vortices

According to the method of discrete vortices, the surface of a moving body or the
boundary layer and vortex sheets are replaced by a finite system of many vortices, so
that the original problem is replaced by the problem of a large number of vortices that
are produced, accumulated, and shed in the infinite boundless domain. This method
is justified by the following philosophy:

1. Separation past bluff bodies arise roughly at the Reynolds number Re > 10
when the interaction of vortices with one another and with the surface of a body
is much more substantial than the separation of boundary layer and formation of
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vortices. As a reminder, Re = V L/ν where ν is the kinematic viscosity, and V
and L are the characteristic velocity and linear size of the flow.

2. Hence, for large Reynolds numbers, when a great number of vortices are gener-
ated in a fluid, amany-vortices problemof inviscid fluid is practically the problem
of turbulence. For any practical purpose of calculation of drag and lift, turbulent
flows can be effectively described by some system of vortices or vortex sheets
in a perfect fluid, the circulation of vortices being determined in the process of
solution.

This philosophy allows one to generate practical solutions for separated and tur-
bulent flows without to use the Navier–Stokes equations. Meanwhile, namely such
flows mostly take place in nature and industry. Below, we provide the simple math-
ematics of this approach for the 2D or plane flows.

The fluid velocity v of a plane flow can be described by a vector function of time
t and space coordinates x1 and x2

v = v1(x1, x2, t) + iv2(x1, x2, t). (4.5.1)

The vorticity of the flow is described by the curl vector ω = ∇ × v. This vector
is perpendicular to the x1, x2-plane and its magnitude is equal to

ω(x1, x2, t) = ∂v2

∂x1
− ∂v1

∂x2
. (4.5.2)

The relation between velocity and vorticity is analogous to that between magnetic
field and electric current density. Vorticity can be interpreted physically as an angular
momentum density; a round fluid particle, instantaneously frozen without loss of
angular momentum, rotates with angular velocity ω/2. The term “vortex motion”
refers to flows in which the vorticity is confined to finite regions, called vortices,
inside which the motion is said to be rotational. A fluid particle without vorticity can
acquire it by viscous diffusion or the action of non-conservative outer forces. Hence,
the study of vortices is of interest, first of all, for incompressible gases and fluids
because vorticity can be associated with fluid particles.

Most famous examples of two-dimensional vortex motion are hurricanes, the
Karman vortex street in the wake of a cylinder, the row of vortices formed by the
Kelvin–Helmholtz instability at the interface between two streams of different veloc-
ity, dust devils and tornadoes, and the quantized vortices of He II. In incompressible
gases and fluids, vortices are created in the process of the separation of a bound-
ary layer. Therefore, the terms “separated flows” and “vortex flows” are practically
equivalent. However, vortices can also be due to quantum mechanical effects (for
He II), to non-conservative external forces, and to barocline density variations (in
compressible gases).

There are vortex filaments, vortex patches, and vortex sheets. A vortex filament is
a vortex in the shape of a tube of small cross section. Below,we consider only the limit
of straight vortex filaments of finite strength and zero cross section called rectilinear
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line vortices or, shortly, vortices. The Helmholtz laws imply that a rectilinear line
vortex moves with the fluid unless external forces act on the core. The vortex is said
to be bound if external forces keep it at rest or fixed to the boundary of a body. The
vortex is said to be free if it moves with the fluid.

Vortex patches are finite areas of vorticity in two-dimensional flows. A vortex
sheet is the limit in which the vorticity domain is compressed into a line of zero
thickness in a 2D flow. The velocity component normal to the sheet is continuous;
the tangential component is discontinuous, the magnitude of the discontinuity being
the strength of the sheet.

According to the Joukowsky–Chaplygin theory, flow past a wing can be described
by bound vortices in thewing togetherwith a trailing vortex sheet downstream,which
rolls up into an opposite rotating vortex.As a reminder, a rectilinear line vortex having
a core at the coordinate origin in the unbounded fluid has the velocity field

v1 = − �x2
2πr2

, v2 = �x1
2πr2

, v3 = 0 (4.5.3)

or, in polar coordinates r and θ

vr = 0, vθ = �

2πr
, v3 = 0. (4.5.4)

Here,� is the strength of the vortex called circulation. The streamlines of the field
are concentric circles, centered at the coordinate origin.

According to Eq. (4.5.4), a vortex with circulation �k having a core at point A
with coordinates x1 = x1k and x2 = x2k induces the fluid velocity, the value of which
at point B(x1B, x2B) is equal to

|vk B | = �k

2π Rk B
, Rk B =

√
(x1B − x1k)

2 + (x2B − x2k)
2 (4.5.5)

and the velocity vector is directed perpendicularly to the radius vector Rk B coinciding
in sign with the vortex rotation (see Fig. 4.3).

The x1 and x2-components of the induced velocity vkB at any point B designated
as (vk B)1 and (vk B)2 can be written as follows:

(vk B)1 = −�k sin θk B

2π Rk B
, sin θk B = x2B − x2k

Rk B
; (4.5.6)

(vk B)2 = �k cos θk B

2π Rk B
, cos θk B = x1B − x1k

Rk B
. (4.5.7)

Hence, for any number N of vortices in the unbounded fluid, the fluid velocity
components (vB)1 and (vB)2 at point B are equal to:
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Fig. 4.3 Velocity vB
K induced by the kth vortex of circulation �K

(vB)1 = − 1

2π

N∑
k=1

�k sin θk B

Rk B
; (4.5.8)

(vB)2 = 1

2π

N∑
k=1

�k cos θk B

Rk B
. (4.5.9)

These equations provide the velocity field of any number of vortices in unbounded
fluid, if the vortex circulations �k and the vortex motion laws x1k(t) and x2k(t) are
known for all values of k.

When the body boundary and vortex sheets are replaced by a number of discrete
vortices of unknown circulations, the problem is reduced to that of unbounded fluid
with N vortices, so that the values of �k , as well as the values of x1k(t) and x2k(t) of
free vortices, should be determined in the process of solution.

The motion equations of vortices can be written as follows:

�k
dx1k

dt
= �kU1k − G1k; (4.5.10)

�k
dx2k

dt
= �kU2k − G2k . (k = 1, 2, . . . N ) (4.5.11)

Here, U1k and U2k are the fluid velocity components at the core of the kth vortex
produced by all other vortices, and G1k and G2k are the components of the external
force applied to the core of the kth vortex. The values of U1k and U2k are defined by
Eqs. (4.5.8) and (4.5.9) in which the kth addend should be excluded.

The equation system, Eqs. (4.5.10) and (4.5.11), includes NF free vortices and
NB bound vortices so that
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3NF + NB = 2N . (4.5.12)

And so, the number of equations is equal to the number of unknowns which are
the circulations of all vortices and the coordinates of free vortices. The problem
is reduced to the computation of this equation system for large N. It seems that
this simple numerical approach can practically solve the problem of turbulence by
avoiding the Navier–Stokes equations and the fancy nature of fluids. However, the
instability ignored in [4, 5] may become the main problem in this approach, as well.

When the external forces are conservative or absent, Eqs. (4.5.10) and (4.5.11) are
Hamiltonian, and the methods of statistical mechanics can be applied for very large
N. A temperature can be defined that when positive characterizes a well-mixed state
and when negative leads to states where vortices of like rotation clump together.

The problem of instability. Let us consider the original 2D problem of a uniform
fluid flowwith the characteristic velocityV around a body of the characteristic size L.
Using the method of discrete vortices, this problem is reduced to the solution of the
differential equation system, Eqs. (4.5.10) and (4.5.11), in the unbounded space with
only one new parameter, which is the characteristic circulation� of discrete vortices.
Since it has the dimension of the kinematic viscosity, the only dimensionless number
is Ch = V L/� in this problem.

In vortex flows of inviscid fluid, it plays the part theReynolds number Re = V L/ν

plays in the flow of viscous fluid. Hence, at a high Ch, the instability of any vortex
flow is unavoidable.

Let us consider the Karman vortex street as an example of vortex systems. This
consists of two parallel rows of the same spacing, but of opposite vorticities � and
−�, so arranged that each vortex of the upper row at z = an + ib/2 when t = 0
is directly above the midpoint of the line joining two vortices of the lower row at

z =
(

n + 1

2

)
a − 1

2
ib when t = 0 (n = 0,±1,±2, . . .).

The complex potential of this vortex flow at the instant t = 0 is equal to

W = i

2π
� log sin

π

a

(
z − 1

2
ib

)
− i

2π
� log sin

π

a

(
z − 1

2
a + 1

2
ib

)
. (4.5.13)

The upper and lower rows advance with one and same velocity V

V = 1

2a
� tanh

πb

a
. (4.5.14)

The rows will advance the distance a in time τ = a/V and the configuration will
be the same after this interval as at the initial instant. This row system is generally
unstable, except for some special values of b/a and �/(aV ). In the limit a/b → 0,

these vortex rows turn into two vortex sheets along z = ± ib

2
where the tangential

velocity of fluid suffers a discontinuity.
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Suppose a cylindrical body is placed in a stream, so that vortices leave the opposite
edges alternatively, with a Karman vortex street being created behind the body. In
this case, Karman derived the following approximate equation for the drag D (in our
designation)

D

ρbU 2
= 1

Ch

(
1 + a

2πbCh

)
where U = U0 − 2V, Ch = aU

�
. (4.5.15)

Here, U0 is the velocity of the cylinder with respect to liquid at rest, Ch is the
characteristic dimensionless number similar to the Reynolds number Re, and V is
the velocity given by Eq. (4.5.14).

The function D(Ch) of Eq. (4.5.15) reminds the similar function D(Re) for
the drag of a body moving in a viscous fluid, until the flow crisis occurs at the
Reynolds number of the order of 2000–5000. Evidently, for vortex flows of perfect
fluid similarly to the flow of viscous fluid, the following theorem is valid:

Any vortex system becomes unstable at some critical value of the number
Ch = V L/�, where V is the characteristic speed of the uniform fluid flow, L is
the characteristic size of the body, and � is the characteristic circulation of vortices.

The study of large Reynolds number flows, especially separated flows, using the
method of discrete vortices suggests some new, attractive avenues of research.

Hurricanes and tornados. Most majestic vortices in nature are tornados and
hurricanes called typhoons if they happen in the Pacific or Indian oceans. They are
characterized by the speed V of maximum sustained winds, by the specific radius R
and height H of their penetration in atmosphere, by the circulation � measuring their
strength, and by their energy E ≈ ρV 2H R2 ∼ ρH�2. The dimensionless number
Ch = V R/� provides the opportunity to study hurricanes and tornadoes using the
laws of similarity.

A great base of data collected for all hurricanes of the last hundred years made it
possible to create a dozen ofwell-working empiricalmodels that predict the trajectory
and strength of any hurricane very accurately. Each hurricane has a male name
and a detailed biography carefully printed in the computer memory. The height of
hurricanes is about the thickness of the Earth layer of atmosphere. Therefore, based
on the similarity law, the main characteristic of the strength of a hurricane is the
maximum speed of sustained winds which is directly proportional to the circulation
of the hurricane.

There are five categories of strength, with the maximum speed of sustained winds
being in the range of: 33–42m/s (1st category), 42–49m/s (2nd category), 49–58m/s
(3rd category), 58–70 m/s (4th category), and 70+ m/s (5th category). Some gusts
can be much stronger; during the hurricane Andrew in Florida in 1991, the recorded
speed of some gusts exceeded 200 m/s. The wind then levelled cities with the ground
on the path of the hurricane; it tossed up railway wagons and cars. The energy of
a major hurricane can exceed the energy of some thousands of Hiroshima atomic
bombs.
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Chapter 5
The Strength of Adhesion

Abstract A series of most significant problems concerning the motion of a sharp
punch on an adhesive, elastic foundation, plate, or membrane are studied using the
invariant integral of adhesion of different materials. A film covered most of the bod-
ies is also taken into account. This is, in fact, a new contact mechanics accounting
for the adhesion and predicting the resistance forces. Also, in this chapter, the basic
mathematical problem of stick and slip on the contact area was, at last, solved after
many unsuccessful attempts of such great individuals as Hertz, Prager, Muskhel-
ishvili, and others; the solution of this nonlinear problem appeared to depend on six
dimensionless parameters! This chapter is a must for mechanical engineers.

Adhesion is a word of the Latin origin meaning the clinging of dissimilar materials
one to another (while “cohesion” means the clinging of the like materials). The
strength of adhesion is characterized by the specific adhesion energy which is the
work spent to liberate a unit of the common surface of twomaterials. The “liberation”
or the interface fracturing is a complicated process which essentially depends on the
mechanical and geometrical properties of the structure.

In this chapter, we consider some basic problems of adhesion for static elasticity
and small deformations represented by the corresponding invariant integrals. Espe-
cially complicated are the stick and slip problems accounting for various scenarios
of contact interactions.

The chapter is based on this author’s publications The contact problem of the
mathematical theory of elasticity with stick-and-slip areas. The theory of rolling
and tribology and Some new applications of the invariant integrals in mechanics
published in J. Appl. Math. Mech. (JAMM), 76(5),2012 and 79(1), 2015.

5.1 The Resistance Forces Upon a Punch—The Γ−Force

Let us consider the problem of a smooth rigid punch with an angular leading edge
moving along the surface of a half-space and confine ourselves to the case of plane
strain. According to the classical theory, the smooth punch does not experience
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resistance forces opposing itsmotion, since the shear stress in the contact area is equal
to zero. However, this conclusion does not take into account the stress singularity on
the leading edge of the punch which causes the energy dissipation on this edge. The
latter gives rise to a head resistance force at the leading edge of the punch we will
study in the next Sects. 5.2–5.4.

Single smooth punch. Let the boundary conditions of the problem have the fol-
lowing shape (Fig. 5.1):

σy = 0, τxy = 0 when y = 0, and x < −b orx > 0; (5.1.1)

uy = f (x), τxy = 0 when y = 0,−b < x < 0. (5.1.2)

Here, Oxy are Cartesian coordinates with the origin on the leading edge of a
punch moving in the direction of the x− axis along the boundary y = 0 of the elastic
half-plane y < 0, and f (x) is the shape of the punch surface, and (−b, 0) is the
contact area.

The displacement components ux and uy and the stress components
σx , σy, and τxy are expressed by the Kolosov–Muskhelishvili formulae:

σx + σy = 4ReΦ(z), σy − σx + 2iτxy = 2
[
z̄Φ ′(z) + Ψ (z)

]; (5.1.3)

2μ
(
ux + iuy

) = κϕ(z) − zϕ′(z) − ψ(z), z = x + iy, κ = 3 − 4ν. (5.1.4)

Here, ϕ(z) and ψ(z) are analytic functions in the elastic domain, Φ(z) = ϕ′(z)
and Ψ (z) = ψ ′(z), and μ is the shear modulus, and ν is Poisson’s ratio.

The solution of the boundary value problem, Eqs. (5.1.1) and (5.1.2), which is
unbounded in the stresses on the leading edge but bounded on the trailing edge, and
which disappears at infinity, has the following form

Fig. 5.1 A sharp punch moving on the surface of an elastic body



5.1 The Resistance Forces Upon a Punch… 91

Φ(z) = − 2μX(z)

π(κ + 1)

0∫

−b

f ′(x)
X−(x)

dx

x − z
, Ψ (z) = −zΦ ′(z). (5.1.5)

X(z) = √1 + (b/z), (X(z) → 1 when z → ∞). (5.16)

From the equilibrium condition, it follows that

Φ(z) = i P

2π z
when z → ∞. (5.1.7)

Here, P is the magnitude of the force indenting the punch into the half-plane.
From Eqs. (5.1.5) and (5.1.7), we can find that

−μ

0∫

−b

f ′(x)
∣∣∣
∣

√
x

x + b

∣∣∣
∣dx = (1 − ν)P. (5.1.8)

This equation serves to determine the length b of the contact area.
In a small neighborhood of the leading edge when z → 0, from Eq. (5.1.5), we

get:

Φ(z) = 2Ψ (z) = i K

2
√
2π z

, (z → 0) (5.1.9)

K = μ

1 − ν

√
2b

π

0∫

−b

f ′(x)dx
∣∣√x(x + b)

∣∣ . (5.1.10)

These equations follow from Gakhov’s equations describing behavior of the
Cauchy-type integral at the end of the contour of integration in the case of a power-law
singularity. Functions of Eq. (5.1.9) also correspond to the solution of the problem of
a semi-infinite tensile mode crack along y = 0, /; x > 0 where K is the stress inten-
sity factor. Since the drag is applied to the leading edge of a moving punch, the value
of the head resistance for punches of arbitrary shape is determined by Eqs. (5.1.9)
and (5.1.10).

In the problem under study, the field singularity of the leading edge moves along
the x− axis. The Γ −Force of drag acting on this singularity is given by the invariant
integral

Γx =
∫

s

(
Unx − σi j n j ui,x

)
dS , (i, j = 1, 2) (5.1.11)

Here, as distinct from Eq. (3.3.5), S is any contour traversed counterclockwise
from an initial point on the x− axis to the left of the coordinate origin to a final point
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on the x− axis to the right of the origin. The value of Γx does not depend on the
shape of the contour and the choice of its initial and final points because Eq. (5.1.11)
expresses the energy conservation law.

To calculate the Γ −Forceof drag by Eq. (5.1.11), we can use Eq. (3.3.6) in the
form:

Γx = π

2
lim
[
σy(−ε, 0)uy(+ε, 0) + τxy(−ε, 0)ux (+ε, 0)

]
, (ε → 0). (5.1.12)

For the potential functions of Eq. (5.1.9), the stresses and displacements can be
found using Eqs. (5.1.3) and (5.1.4) so that when y = 0, we get:

uy = 0 when x < 0; uy = 2K
(
1 − v2

)
E−1(2π)−1/2x1/2 when x > 0;

σy = 0 when x > 0; σy = −2K (2π |x |)−1/2 when x < 0. (5.1.13)

Since τxy = 0 when y = 0, from Eqs. (5.1.13) and (5.1.12) it follows that

Γx = −1 − ν2

E
K 2. (5.1.14)

This is the drag force applied to the leading edge of an arbitrarily shaped punch.
The values of K and b are given by Eqs. (5.1.8) and (5.1.10) so that the problem is
solved. This force is concentrated; it plays, evidently, the main part in wear and tear
of any cutting tools, but it is, amazingly, ignored in the scientific literature.

We can also derive Eq. (5.1.14) using another method. An advance of the punch
to the right by an amount  can be represented as the result of applying a nor-
mal loading of the pressure from zero to 2K (2π |x − |)−1/2 in the interval (0,),
under the action of which the boundary in this part undergoes a displacement from
2K
(
1 − ν2

)
E−1(2π)−1/2x1/2 to zero. Using Clapeyron’s theorem, we can calculate

the work done in this process. By the energy conservation law, this work is equal to
the loss Γx. By this way, we again come to Eq. (5.1.14).

The third way of calculating the value of Γx is to use its invariance with respect to
contour S in Eq. (5.1.11) and to deform it into another contourwhere the integration is
easier (like it is common in the theory of analytical functions of a complex variable).
The value of Γx in Eq. (5.1.11) does not change, if contour S is deformed into the
sum of intervals (−∞,−b), (−b,−ε) and (+ε,+∞) of the real axis and the half
of the circle |z| = R in the lower half-plane when ε → 0, R → ∞. From here, by
using the boundary conditions in Eqs. (5.1.1) and (5.1.2), we can derive:

Γx = −
0∫

−b

σy
∂uy

∂x
dx when y = 0. (5.1.15)

In particular, for the flat punch, when uy = −βx we get:



5.1 The Resistance Forces Upon a Punch… 93

Φ(z) = − 2βμi

κ + 1

[

1 −
√

1 − b

z

]

,

Γx = −βP, b = 2(1 − ν)

πμβ
P, K = − μβ

1 − ν

√
1

2
πb.

(5.1.16)

The concentrated head force of resistance applied at the leading edge of the punch
is balanced by the distributed force of the normal pressure under the punch.

In the case, when the shape of the punch is the parabola f (x) = ax2, the calcu-
lations using Eqs. (5.1.5), (5.1.7), (5.1.9), and (5.1.13) lead to the following results:

Φ(z) = 4iaμ

κ + 1

[

z −
(
z − b

2

)√

1 + b

z

]

, (5.1.17)

b2 = κ + 1

3πaμ
P, K = −4μab

κ + 1

√
2πb, Γx = − πa2b2E

2
(
1 − ν2

) . (5.1.18)

In this case, the relation between the drag and the indenting force is:

Γx =
√
a
(
1 − ν2

)

πE

(
2

3
P

)3/2

. (5.1.19)

It should be kept in mind that the concentrated force Γx applied to the leading
edge is balanced by the total horizontal component of the distributed force from the
pressure under the punch, which is equal to the integral of σy∂uy/∂x with respect to
dx . Hence, the total resistance force acting on a punch moving over an elastic body
is equal to zero.

However, all real materials possess plastic and other inelastic properties that man-
ifest themselves under high stresses. On account of this, the stress singularity on the
leading edge leads to irreversible deformations in the body close to this edge so that
a large part of the work of the force on the edge is irreversible and it is converted
into heat (as well as into the energy of the residual deformations in the trail behind
the moving punch). In the case of a fairly large indenting force, the reversible part of
this work that is balanced by the work of the distributed forces of the pressure under
the punch is negligibly small compared with the irreversible work of this force.

Adhesion effect. Now, let us evaluate the effect of adhesion in the limiting case,
when the resistance to rupture is much greater than the resistance to shear. In this
case, we can ignore the shear stress in the contact area and let the tensile stresses
be near the trailing edge of the punch. The latter necessitate the growth of a stress
singularity at this edge, the strength of which is determined by the adhesion energy
on the punch-material contact.

In this case, the solution of the boundary problem of Eqs. (5.1.1) and (5.1.2),
which is unbounded both on the leading and trailing edge and behaves at infinity
according to Eq. (5.1.7), has the form:
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Φ(z) = 2μ

π(κ + 1)X(z)

0∫

−b

f ′(x)X−(x)
dx

x − z
+ i P

2πX(z)
,

X(z) = √
z(z + b), Ψ (z) = −zΦ ′(z), X(z) → z when z → ∞.

(5.1.20)

In a small neighborhood of the trailing edge when z → −b, the field should
correspond to that at the tensile crack end, that is,

Φ(z) = 2Ψ (z) = KA

2
√
2π(z + b)

, z → −b. (5.1.21)

Here, KA is the adhesion toughness.
Using Eqs. (5.1.20) and (5.1.21) when z → −b, we find the equation to determine

the value of b

KA

√
2πb = 2P + 2μ

1 − ν

0∫

−b

f ′(x)
∣
∣∣∣

√
x

x + b

∣
∣∣∣dx . (5.1.22)

Similarly, an analysis of a small neighborhood of the leading edge when z → 0,
provides the elastic field and head resistance Γx

Φ(z) = 2Ψ (z) = i K

2
√
2π z

, Γx = 1 − ν2

E
K 2, (5.1.23)

K
√
2πb = 2P + 2μ

1 − ν

0∫

−b

f ′(x)

∣∣∣∣
∣

√
x + b

x

∣∣∣∣
∣
dx . (5.1.24)

In the simplest case of a flat punch when f ′(x) = −β, we obtain:

Φ(z) = − 2μβi

κ + 1

(
1 − z + C√

z(z + b)

)
where C = 1

2
b − κ + 1

4πμβ
P; (5.1.25)

Γx = −βP − 1 − ν2

E
K 2

A, P − 2π
μβb

κ + 1
= KA

√
π

2
b. (5.1.26)

The adhesion at the trailing edge increases the force Γx of the head resistance.

5.2 A Punch on a Body Covered with an Inextensible Film

Young’s modulus for a monatomic film of graphene is roughly ten times greater
than Young’s modulus of steel, and the tensile strength of this film is of the order of



5.2 A Punch on a Body Covered with an Inextensible Film 95

Young’s modulus of steel. These films, for the experimental development of which
K. S. Novoselov and A. K. Geim were awarded the Nobel Prize in Physics, can serve
as some promising coatings on the critical elements of structures. A study of stresses
and strains in elastic bodies coveredwith an inextensiblemembrane of zero thickness,
by which a film of graphene is well simulated, is therefore of great interest. We will
consider the problem of the pressure of a punch on an elastic half-plane covered with
an inextensible film of zero thickness bonded to the material of the half-plane by
adhesion. We will assume the plane-strain conditions.

According to Eq. (5.1.4), if the boundary of the half-plane is inextensible, that
is ∂ux/∂x = 0 when y = 0, then the following relation is valid at Imz = 0 and
everywhere based on the principle of analytic continuation:

zΦ ′(z) + Ψ (z) = (κ − 1)Φ(z). (5.2.1)

From this and Eqs. (5.1.3) and (5.1.4), it follows that:

σy = (κ + 1)ReΦ(z), τxy = (κ − 1)ImΦ(z) when y = 0; (5.2.2)

μ∂uy/∂x = κ ImΦ(z), σx = (3 − κ)ReΦ(z) when y = 0. (5.2.3)

Using Eqs. (5.2.2) and (5.2.3), the solution of the contact problem

y = 0 : uy = f (x) when |x | < b; σy = 0 when |x | > b (5.2.4)

can be written as:

Φ(z) = iμ

πκ
√
z2 − b2

+b∫

−b

f ′(x)
√
b2 − x2

x − z
dx + i P

π(κ + 1)
√
z2 − b2

. (5.2.5)

Here, P is the value of the indenting force and
√
z2 − b2 → z when z → ∞.

The tension T (x) in the film on the free surface is found by integrating the equi-
librium equation of the film

dT

dx
= τxy . (5.2.6)

Here, τxy is the shear stress under the film, as it is defined by Eqs. (5.2.2) and
(5.2.5).

We shall first study the auxiliary problem of the motion of a semi-infinite rectan-
gular punch on the boundary of the half-plane y = 0 along the x− axis:

uy = const when x < 0; σy = 0 when x > 0. (5.2.7)
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This problem characterizes the elastic field close to the leading edge of any punch
moving along the surface of an elastic body which, in this case, is covered with an
inextensible film of almost zero thickness. According to Eqs. (5.2.1)–(5.2.3), the
elastic field of this auxiliary problem will be as follows:

Φ(z) = i K

2
√
2π z

, Ψ (z) =
(

κ − 1

2

)
Φ(z), z = x + iy. (5.2.8)

Here, K is a constant, and the corresponding stresses and displacement at y = 0
are equal to:

x > 0 : uy = K

μ

√
x

2π
, τxy = 1 − 2ν√

2πx
K , σx = σy = 0; (5.2.9)

x < 0 : σx = − 2ν√
2π |x |K , σy = −2(1 − ν)√

2π |x | K , τxy = 0. (5.2.10)

Based on the boundary conditions of Eq. (5.2.7) and the condition of the inexten-
sibility of the boundary, the integral Γx defined by Eq. (5.1.11) will be invariant with
respect to any open contour in the lower half-plane with an origin at any point lying
on the x− axis to the left of the coordinate origin and with an end at any point on the
x− axis to the right of the origin. Evaluation of this invariant integral again leads to
Eq. (5.1.14) in which, however, the coefficient K is defined by Eqs. (5.2.8)–(5.2.10).
In this auxiliary problem, the magnitude of Γx in Eq. (5.1.14) provides the drag
opposing the motion of the punch along the surface of an elastic body covered by
an inextensible film of almost zero thickness. In the case of an arbitrary punch, the
coefficient K is determined by the punch shape, and Eq. (5.1.14) provides the drag
force acting on its leading edge.

In the case of a problem that is symmetrical about the y− axis, according to
Eq. (5.2.5) the coefficient K at the edges x = ± b of the punch of arbitrary shape is
equal to

K = − 2P

(κ + 1)
√

πb
+ μ

κ
√

πb

+b∫

−b

f ′(x)

∣∣
∣∣∣

√
x + b

x − b

∣∣
∣∣∣
dx . (5.2.11)

If the function f ′(x) is continuous, and the adhesion/interaction between the
materials of the punch and the film is negligibly small, then there is no singularity
at the edges of the punch, that is, K = 0. In this case, Eq. (5.2.11) serves to define
the size of the contact area in terms of the indenting force.

If, however, the function f ′(x) is continuous, but considerable attractive forces
act between the punch and film materials, characterized by an adhesion energy
ΓA, then, according to Eq. (5.1.14), the magnitude of K will be equal to KA =
(2EΓA)

1/2
(
1 − ν2

)−1/2
. In this case, the size of the contact area is found from

Eq. (5.1.14), a solution of which exists even in the case of tensile stresses and neg-
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ative values of P. In the latter case, the process will obviously be unstable so that
Eq. (5.1.14) provides the relation between the limiting delamination force and the
size of the initial contact area.

Let us discuss two special cases of the plane and parabolic punches.
Plane punch. In this case, f ′(x) = 0, and using Eqs. (5.2.2)–(5.2.5), we obtain

on the boundary of the half = plane:

|x | > b : τxy = μ

(
1 − 1

κ

)
∂uy

∂x
= (κ − 1)P

π(κ + 1)
√
x2 − b2

, σx = σy = 0;
(5.2.12)

|x | < b : σy = 1 + κ

3 − κ
σx = − P

π
√
b2 − x2

, τxy = 0, ∂uy/∂x = 0. (5.2.13)

Using Eqs. (5.2.12) and (5.2.6), we find the tension in the film

T = κ − 1

π(κ + 1)
PIn

⎛

⎝ x

b
+
√
x2

b2
− 1

⎞

⎠ when |x | > b. (5.2.14)

Under the punch, the tension in the film is obviously equal to zero. It can be seen
that, as onemoves away from the punch, the tension in the film increaseswithout limit
so that for a fairly large size the filmwill be torn. This imposes some limitations on the
maximum size of structural elements coveredwith a graphene film. Equation (5.2.14)
enables one to establish a safe size of structural elements. The limiting tension in
graphene films has an order of 6n kG/m where n is the number of monatomic layers
in the film.

Parabolic punch. According toEq. (5.2.5), in the case of a parabolic punch f (x) =
ax2 we find

Φ(z) = iaμ
(
b2 − 2z2

)

κ
√
z2 − b2

+ 2ia
μ

κ
z + i P

π(κ + 1)
√
z2 − b2

. (5.2.15)

In the case of the punch-film adhesion, using Eq. (5.2.15) at the edge of the contact
area, we have

KA =
√

π

b

[
− 1

π
P + aμb2

(
1 + 1

κ

)]
. (5.2.16)

If the adhesion can be ignored, then the adhesion toughness KA is equal to zero,
and we get

P = πaμb2
(
1 + κ−1

)
. (5.2.17)
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Fig. 5.2 a, b A ball rolling on a membrane

The corresponding result for the material without a film coincides with that of
Eq. (5.2.17) if its right-hand part is multiplied by 4κ(1 + κ)−2.

If P < 0, Eq. (5.2.16) also provides the solution of the problem of the limiting
force tearing the punch off the foundation. According to Eq. (5.2.16), the relation
P = P(b) has the form shown in Fig. 5.2.a, b. If P > 0, the contact area, starting
from a certain value b = b∗ for which P = 0, increases as the indenting force
increases. This value is equal to

b∗ = λ1/3(1 + ν)1/3(3 − 4ν)2/3

a(1 − ν)
where λ = a

(
1 − ν2

)

4πE
K 2

A. (5.2.18)

The dimensionless parameter λ characterizes the role of adhesion in the process,
which is obviously unstable when 0 < b < bm = b∗/8 because in this range the
value of tearing force increases, but the size of the contact area also increases. The
limiting tearing force P = −Pm is attained at b = b∗/8 while the value of the force
grows along the stable path when b∗ > b > b∗/8:

64Pm = 16KA

√
2πb∗ − πaμb2∗

(
1 + κ−1

)
. (5.2.19)

This analysis also holds qualitatively in the case of a material without a film if the
adhesion of the material to the punch is significant.

5.3 A Half-Space Covered with an Inextensible Film

Let us consider an elastic half-space z < 0 with a boundary covered with an inex-
tensible film subjected to the action of a normal concentrated force F. We have

z = 0 : ux = uy = 0, σz = Fδ(x, y). (5.3.1)

In this and next sections, ux , uy and uz are the components of the displacement
vector along the axes of the Cartesian coordinates x, y and z; σz is the normal stress,
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and δ(x, y) is the Dirac delta function. This problem is an analog of the classical
Boussinesq problem for a half-space without a film.

The result of solving the boundary value problem of Eq. (5.3.1) can be represented
as follows:

ux = F
xz

μ∗r3
, uy = F

yz

μ∗r3
, and uz = F

r2(3 − 4ν) + z2

μ∗r3
r2 = x2 + y2 + z2, μ∗ = 8πμ(1 − ν).

(5.3.2)

The strains and stresses are determined from here using the common equations
of the theory of elasticity. The solution of Eq. (5.3.2) can serve as Green’s function
for an arbitrary distributed load.

We will now consider the problem of the interaction of two heavy masses m
and M lying on the horizontal surface of the half-space z < 0 covered with an
inextensible film. The size of the masses is assumed to be small compared with the
distance between them, and the force of gravity is assumed to be directed vertically
downwards. In this case, using Eq. (5.3.2) and the invariant integral of Eq. (5.1.11),
we can find that an attractive force acts between these masses, which is equal to

F = (3 − 4ν)mMg2

μ∗R2
. (5.3.3)

Here, R is the distance between themasses, and g is the gravitational acceleration.
This force is (3 − 4ν)g2/[8πμG(1 − ν)] times greater than the Newtonian gravity
force (G is the gravitational constant).

As a comparison, the attractive force between two heavy masses lying on the
horizontal surface of an elastic half-space without a film is equal to

F =
(
1 − ν2

)
mMg2

πER2
. (5.3.4)

As seen, the film slightly, 4(1 − ν)2/(3 − 4ν) times, decreases the force.

5.4 A Ball Lying on a Membrane

Wewill now consider the contact problem of a heavy rigid sphere lying on a horizon-
tal, flexible film (membrane) that is stretched by a tension γ uniformly in all direc-
tions; see Fig. 5.2a, b. Some bonding forces, characterized by an adhesion energyΓA,
act between the sphere and film materials. The gravity force is directed downward.
We will confine ourselves to the case when the contact area can be assumed to be a
paraboloid of revolution:w = r2/(2R)where R is the sphere radius,w is the vertical
displacement of the membrane, and r is the horizontal distance from the center of
the circular contact area (the displacement is measured relative to the center).
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The displacement of the membrane outside the contact area is obviously equal to:

w = C ln
r

b
+ b2

2R
, r > b, R � b. (5.4.1)

Here, b is the radius of the circular contact area, and C is a constant. The sphere
experiences a pressure p = 2γ /R exerted by the membrane that is constant every-
where in the contact area.

The driving force Γ of the active contact front per unit length of the front is equal

to
1

2
γ
[
(∂w/∂n)2

]
at this contact front of single moment less shells, where the square

brackets mean the discontinuity of the quantity in brackets, and see the theory of
delamination of multilayered shells and plates in [2]. In this case, the contact front
is at r = b, and ∂w/∂n is equal to dw/dr at r = b+ and b/R at r = b−, so that we
have

Γ = 1

2
γ

(
dw

dr
− b

R

)2

= 1

2
γ

(
C

b
− b

R

)2

. (5.4.2)

Since Γ = ΓA (the adhesion energy of the ball-film materials), the equilibrium
equation has the form

P = 2πγ b2/R − 2πCΓA where C = b2/R + b
√
2ΓA/γ . (5.4.3)

Here, P is the force of the ball pressure on the membrane.
When γ > ΓA, the diagram P = P(b) has the form shown qualitatively depicted

in Fig. 5.2a, b. When P = 0, we have

b = b∗ = R
√
2

(ΓA/γ )3

1 − (ΓA/γ )
where γ > ΓA. (5.4.4)

In this position, the weight of the ball is balanced by the delamination force
directed vertically upwards. The maximum delamination force that has to be applied
to the sphere in order to separate it completely from the membrane is equal to the
force

P = 3πγ R
(ΓA/γ )3

1 − (ΓA/γ )
where γ > ΓA, (5.4.5)

which corresponds to the point of the minimum b = bm = b∗/2 in the diagram.
For any b > bm , the diagram P = P(b) made using Eq. (5.4.3) uniquely deter-

mines the size of the contact area as a function of the applied force and, in particular,
of the sphere weight. When 0 < b < bm , the equilibrium position is unstable.

In the case when γ < ΓA, the force P = P(b) decreases monotonically when b
grows. Hence, any state in the diagram is unstable, and always P < 0.
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In the special case of no adhesion when ΓA = 0, b = b∗ = 0, we have

b = √(PR)/(2πγ ), C = b2/R. (5.4.6)

In this case, the well-known condition of smooth joining on the edge of the contact
area follows from here.

The present analysis of this problem is also important for the design of optimal
armored waistcoat as the first approximation of the impact of a bullet upon the
waistcoat.

In the case of two heavy masses m and M lying on an horizontal membrane
stretched from both sides by the tension, the following force of attraction F acts
between the masses (which can be calculated using the invariant integral):

F = mMg2

2πγ R
. (5.4.7)

The linear size of the masses is assumed to be small compared with the distance
R between them. This law is similar to Ampere’s Law of interaction of parallel linear
currents of one and same direction.

5.5 Stick-and-Slip Problems

By any contact of two elastic bodies, there are always some contact areas where
opposite parts glide one on the other (slip areas) and where they are fixed one to
the other (stick areas). This is the case in all real contact problems. However, the
stick-and-slip problems are exceptionally difficult and, therefore, their solutions are
almost absent in the rich library of many thousand papers and books on contact
problems. Needless to say that any contact is accompanied also by an adhesion due
to the atomistic nature of all solids; however, adhesion was usually ignored, as well.
Luckily, invariant integrals help us to determine the size and development of the
contact areas in these complicated mixed problems.

Below, in Sects. 5.5–5.9 some basic stick-and-slip problems of contact mechanics
are studiedwith account of the adhesion effect. Bearing this inmind, wewill consider
the following contact boundary value problem of the mathematical elasticity theory
under plane strain, when one elastic material occupies the upper half-space, while
the other occupies the lower half-space so that:

y = 0, xεL1 : (
σy − iτxy

)
z=x±0 = p±(x), (5.5.1)

y = 0, xεL2 : [v] = 0, τxy + f σy = τs,
[
σy − iτxy

] = 0, (5.5.2)

y = 0, xεL3 : [u + iv] = e(x) + iw(x),
[
σy − i txy

] = 0. (5.5.3)
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Here and below, f and τs are dry Coulomb friction constants on the slip areas L2;
p±(x) are complex vectors of the normal and shear loads on the opposite banks L1 of
the slit; and e(x) and w(x) are the distribution of the edge and wedge dislocations on
the stick areas L3 (they are equal to zero if the opposite banks are glued without any
dislocations). The latter can also take into account the wear and tear of the opposite
contact surfaces. The value of [A] = A+ − A− denotes the difference of function
A(x, y) on the upper and lower banks of the slit.

In Eq. (5.5.2), it is assumed that in the slip area the normal stress σy is always
negative, while the shear stress τxy is positive; if τxy is negative, we must put the
minus sign in front of the constants f and τs . The position of points of discontinuity
of boundary conditions is usually unknown beforehand and must be found in the
process of solution.

The infinitely distant point is treated differently depending on whether the prin-
cipal force and moment of the stresses σy and τxy at y = 0 are limited or unlimited.
If they are limited, the common St. Venant principle holds. If they are unlimited, the
St. Venant principle is not valid, and some special conditions must be used at infinity
[1–11].

To solve the boundary value problem of Eqs. (5.5.1)–(5.5.3), we will use, instead
of four functions of Kolosov–Muskhelishvili, only two functions Φ(z) and �(z)
introduced by this author in 1962, see also Sect. 4.2. These functions are analytic
over the whole z− plane, with the exception of the x− axis, where they undergo
a discontinuity. The basic representations of the elasticity theory in terms of these
functions have the following form:

in the upper half-plane where Imz > 0 :

σx + σy = 4ReΦ(z), (z = x + iy)

σy − iτxy = Φ(z) + �(z̄) + (z − z̄)Φ ′(z),

2μ1

(
∂u

∂x
+ i

∂v

∂x

)
= κ1Φ(z) − �(z̄) − (z − z̄)Φ ′(z); (5.5.4)

in the lower half-plane where Imz < 0 :

σx + σy = 4
μ1 + κ1μ2

μ1(1 + κ2)
Re

{
Φ(z) + μ1 − μ2

μ1 + κ1μ2
�(z)

}
,

σy − iτxy = μ1 + κ1μ2

μ1(1 + κ2)
Φ(z) + μ1 − μ2

μ1(1 + κ2)
�(z) + κ2μ1 + μ2

μ1(1 + κ2)
�(z̄)

+κ2μ1 − κ1μ2

μ1(1 + κ2)
Φ(z̄) + (z − z̄)

{
μ1 + κ1μ2

μ1(1 + κ2)
Φ ′(z) + μ1 − μ2

μ1(1 + κ2)
�′(z)

}
,

2μ2

(
∂u

∂x
+ i

∂v

∂x

)
= κ2

μ1 + κ1μ2

μ1(1 + κ2)
Φ(z) + κ2

μ1 − μ2

μ1(1 + κ2)
�(z) − κ2μ1 + μ2

μ1(1 + κ2)
�(z̄)

−κ2μ1 − κ1μ2

μ1(1 + κ2)
Φ(z̄) − (z − z̄)

{
μ1 + κ1μ2

μ1(1 + κ2)
Φ ′(z) + μ1 − μ2

μ1(1 + κ2)
�′(z)

}
.

(5.5.5)
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Here, μ and ν are the shear modulus and Poisson’s ratio, and κ = 3 − 4ν for
the plain strain. The subscripts 1 and 2 denote the upper and lower half-planes,
respectively.

The functions Φ(z) and �(z) are expressed in terms of analytic functions
ϕ1(z), ψ1(z), ϕ2(z) and ψ2(z) introduced by Kolosov and Muskhelishvili:

Φ(z) = ϕ
′
1(z) for Imz > 0,

Φ(z) = μ1(1 + κ2)

μ1 + κ1μ2
ϕ′
2(z) + μ2 − μ1

μ1 + κ1μ2

{
ϕ̄′
1(z) + zϕ̄′′

1 (z) + ψ̄ ′
1(z)

}
for Imz < 0,

�(z) = ϕ̄′
1(z) + zϕ̄′′

1 (z) + ψ̄ ′
1(z) for Imz < 0,

�(z) = μ1(1 + κ2)

μ2 + κ2μ1

{
ϕ̄′
2(z) + zϕ̄′′

2 (z) + ψ̄ ′
2(z)

}− κ2μ1 − κ1μ2

μ2 + κ2μ1
ϕ′
1(z) for lmz > 0.

(5.5.6)

Conditions at infinity when Eq. (5.5.1) hold at infinity. Suppose all stresses vanish
at infinity. In this case, the Kolosov–Muskhelishvili functions behave as follows:

in the upper half-plane

ϕ′
1(z) = − X − iY

2π z
+ Mi

2π z2
, ψ ′

1(z) = X + iY

2π z
+ Mi

π z2
, (z → ∞); (5.5.7)

in the lower half-plane

ϕ′
2(z) = − X + iY

2π z
− Mi

2π z2
, ψ ′

2(z) = X − iY

2π z
− Mi

π z2
, (z → ∞). (5.5.8)

Here, (X,Y ) is the resultant force vector of stresses applied to the real axis of the
lower half-plane, and M is the resultant moment of these stresses with respect to the
coordinate origin (assumed negative for clockwise rotation).

According to Eqs. (5.5.6)–(5.5.8), the functionsΦ(z) and�(z) undergo a discon-
tinuity and behave at infinity as follows:

in the upper half-plane

Φ(z) = − X − iY

2π z
+ Mi

2π z2
as Z → ∞,

�(z) = μ1(1 + 2κ2) − κ1μ2

μ2 + κ2μ1

X

2π z
+ μ1 + κ1μ2

μ2 + κ2μ1

(
Y + M

z

)
i

2π z
as Z → ∞;

(5.5.9)

in the lower half-plane

Φ(z) = μ2 − μ1(2 + κ2)

μ1 + κ1μ2

X

2π z
− μ2 + κ2μ1

μ1 + κ1μ2

(
Y + M

z

)
i

2π z
as Z → ∞,
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�(z) = X − iY

2π z
− Mi

2π z2
as Z → ∞. (5.5.10)

Conditions at infinity when Eq. (5.5.3) hold at infinity. In this case, let us assume
that e(x) and w(x) disappear at infinity so that:

Φ(z) = B0 − μ1

μ1 + κ1μ2

X + iY

2π z
as Z → ∞,

�(z) = B0 + B ′ − κ2μ1

μ2 + κ2μ1

X + iY

2π z
as Z → ∞, (5.5.11)

where

(μ2 − μ1)
(
B̄0 − B ′) = B0(κ1μ2 − κ2μ1),

B0 = 1

4
(N1 + N2), B ′ = −1

2
(N1 − N2)exp(−2iω).

Here, N1 and N2 are the principal stresses at infinity; ω is the angle made by the
direction of the N1− axis and the x− axis, measured from the latter; and (X,Y )

is the equivalent force vector at infinity. In this case, functions Φ(z) and �(z) are
continuous at infinity.

Boundary value problem for one function. Now, let us notice that according to
Eqs. (5.5.1)–(5.5.3), we have

[
σy − iτxy

]
known on the whole x− axis. From this,

we can derive that

F+(z) − F−(z) = μ1(1 + κ2)[p(x)] when y = 0. (5.5.12)

Here,

F(z) = (μ1 + κ1μ2)Φ(z) − (μ2 + κ2μ1)�(z);
[p(x)] = p+(x) − p−(x) for x ∈ L1; [p(x)] = 0 f or x ∈ L2 + L3.

(5.5.13)

Using the Sokhotski–Plemelj equation, we can write

�(z) = α Φ(z) − βP(z). (5.5.14)

Here,

α = μ1 + κ1μ2

μ2 + κ2μ1
, β = μ1(1 + κ2)

μ2 + κ2μ1
, P(z) = 1

2π i

∫

L1

[p(x)]

x − z
dx .

Substituting function�(z) in Eqs. (5.5.4) and (5.5.5) byEq. (5.5.14),we derive the
general representation of stresses and displacements in terms of the single analytical
function Φ(z) as follows:
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in the upper half-plane

σx + σy = 4ReΦ(z),

σy − iτxy = Φ(z) + αΦ(z̄) + (z − z̄)Φ ′(z) − βP(z),

2μ1

(
∂u

∂x
+ i

∂v

∂x

)
= κ1Φ(z) − αΦ(z̄) − (z − z̄)Φ ′(z) + βP(z̄); (5.5.15)

in the lower half-plane

σx + σy = 4αReΦ(z) − 4γ ReP(z),

σy − iτxy = αΦ(z) + Φ(z̄) + α(z − z̄)Φ ′(z) − Q1,

2μ2

(
∂u

∂x
+ i

∂v

∂x

)
= ακ2Φ(z) − Φ(z̄) − α(z − z̄)Φ ′(z) − Q2. (5.5.16)

Here,

γ = μ1 − μ2

μ2 + κ2μ1
, Q1 = γ P(z) + P(z̄) + γ (z − z̄)P ′(z),

Q2 = P(z̄) + γ κ2P(z) + γ P ′(z).

To determine analytic function Φ(z), we will use the following boundary condi-
tions, which remain unsatisfied:

(
σy − iτxy

)+ = p+(x) as y = 0, x ∈ L1; (5.5.17)

[
∂v

∂x

]
= 0, τxy + f σy = τs as y = 0, x ∈ L2; (5.5.18)

[
∂u

∂x
+ i

∂v

∂x

]
= e′(x) + iw′(x) as y = 0, x ∈ L3. (5.5.19)

Using Eqs. (5.5.15) and (5.5.16), these conditions can be written as follows:

Φ+ + α Φ− = p(x) as x ∈ L1;
Im
(
Φ+ − Φ−) = 0, (5.5.20)

Re
{
( f + i)Φ+ + α( f + i)Φ−} = τ(x) as x ∈ L2; (5.5.21)

Φ+ − Φ− = d(x) as x ∈ L3. (5.5.22)

Here,
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p(x) = p+(x) + βP−(x),

τ (x) = τs + β f ReP(x) − βImP(x),
(
P+ = P−onL2 + L3

)

d(x) = 2μ1μ2

μ1 + κ1μ2

{
e′(x) + iw′(x) − 2

μ2
P(x) − γ

μ2
P(x)

}
.

Equations (5.5.20)–(5.5.22) form a boundary value problem for one analytic func-
tion.

Mixed problems. The boundary value problems with different conditions on dif-
ferent parts of the boundary are called mixed problems. Most of these problems are
unexplored, and it is usually unclear whether a solution of such a problem exists, and
if does whether it is unique. The study of these problems starts from the local points
of discontinuity of boundary conditions which carry all basic information about the
properties of the whole solution.

Infinitely remote point. The mathematical infinity arises always when we concen-
trate our study on some detail; it is a pay for extra-curiosity. In the old theory of
elasticity, it is usually treated by St. Venant principle that says that only the resultant
force and moment of loads play the role far from the place of application of loads.
However, this principle is wrong for a great number of problems in which the resul-
tant force andmoment of local loads play almost no role far from their application; in
these problems, the stress–strain distribution is determined by geometry and special
conditions at infinity that provide the infinite resultant force. Certainly, the latter has
no physical sense; nevertheless, the solution of these divergent problems provides
an accurate information about the local stresses and strains (e.g., sufficient to solve
the problem of fracturing or instability). It is appropriate to note that such divergent
problems are more common in real life; the St. Venant principle is valid only for
some classical problems; see [1–11] for more detail.

5.6 The Singular Integral Equation of the Problem

Proceeding to the solution of the boundary value problem in Eqs. (5.5.20)–(5.5.22),
we put

U (x) = [ReΦ(z)] = Re
(
Φ+ − Φ−) when y = 0, x ∈ L2. (5.6.1)

FunctionU (x) is identical with [∂u/∂x] = ∂u+/∂x − ∂u−/∂x on L2, apart from
a factor (plus a certain known function).

From Eqs. (5.6.1), (5.5.21), and (5.5.22), it follows that

Φ+ − Φ− = U1(x) when y = 0, x ∈ L2 + L3. (5.6.2)

Here,
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U1 = U (x) f or x ∈ L2, and U1 = d(x) f or x ∈ L3. (5.6.3)

FollowingGakhov [12], we introduce the canonical function X(z) of the boundary
value problem of Eq. (5.5.20)

X+(x) + αX−(x) = 0 when y = 0, x ∈ L1. (5.6.4)

Here, X(z) is a function, analytic outside cuts along L1 and having an integrable
singularity at the ends of n line segments of L1 along ak−1 < x < ak where k =
1, 3, 5, . . ., 2n−1. Then, we can write the solution to this problem as a product of n
pairs, each corresponding to one segment of the x− axis:

X(z) = Π(z − ak−1)
δ(z − ak)

δ̄ where δ = −1

2
+ i

ln α

2π
. (5.6.5)

In the simplest case, we have only one segment when n = 1.
Using Eq. (5.6.4), we can write Eq. (5.5.20) as follows:

(
Φ

X

)+
−
(

Φ

X

)−
= p(x)

X+(x)
where y = 0, x ∈ L1. (5.6.6)

By Sokhotski’s formula, the general solution of the boundary value problem of
Eq. (5.6.6) bounded at infinity has the following form:

Φ(z) = X(z){Φ1(z) + Q(z)}, (5.6.7)

Φ+
1 − Φ−

1 = 0 when y = 0, x ∈ L1, (5.6.8)

Q(z) = 1

2π i

∫

L1

p(x)dx

X+(x)(x − z)
+ Pn(z). (5.6.9)

Here, Pn(z) is a polynomial of degree n.

Based on Eqs. (5.6.7), (5.6.2), and (5.5.22), functionΦ1(z), analytic on L1 accord-
ing to Eq. (5.6.8), has the following discontinuity on L2 + L3

Φ+
1 − Φ−

1 = U (x)

X (x)
(x ∈ L2); Φ+

1 − Φ−
1 = d(x)

X (x)
(x ∈ L3). (5.6.10)

The solution of the boundary value problem of Eq. (5.6.10), which vanishes at
infinity, has the form

Φ1(z) = 1

2π i

∫

L2

U (x)dx

X(x)(x − z)
+ 1

2π i

∫

L3

d(x)dx

X(x)(x − z)
. (5.6.11)
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Using Eqs. (5.6.7) and (5.6.11), the second boundary condition of Eq. (5.5.21) on
the slip areas can be reduced to the following form:

(1 − α)a(x)U (x) + (1 + α)

∫

L2

K (t, x)
U (t)

t − x
dt = b(x) (t, x ∈ L2). (5.6.12)

Here,

a(x) = Re{( f + i)X (x)}, K (t, x) = 1

π
Im

{
( f + i)

X (x)

X (t)

}
,

b(x) = 2τ(x) − 1

π
(1 + α)

∫

L3

Im

{
( f + i)

d(t)X (x)

X (t)

}
dt

t − x
.

This is a classical singular integral equation; numerical methods of its solutions
have been well studied.

In Eq. (5.6.12), some additional boundary conditions are used at the ends of the
slip areas on L2. In the simplest cases, they lead to the requirement that function
U (x) should be bounded or integrable at these points.

5.7 The Closed Solution for Certain Pairs of Materials

In the case when α = 1, the initial boundary value problem and the singular integral
equation have a closed analytic solution. In this case, according to Eq. (5.5.14) we
have for the plane strain

μ1

μ2
= 1 − 2ν1

1 − 2ν2
,

(
0 <

μ1

μ2
< ∞

)
. (5.7.1)

This equality holds not only for identical materials but for many other pairs. For
example, it is sufficiently well satisfied for pairs of hardened rubber (ν1 = 0.48
and μ1 = 7.5 GPa) and structural steel (ν2 = 0.29 and μ2 = 79 GPa), and of
silicate glass (ν1 = 0.19 andμ1 = 32 GPa) and the structural alloy Mg with 8.5%Al
(ν2 = 0.35 and μ2 = 16 GPa), and for other pairs.

For the plane stress, the condition α = 1 can be written as

μ1

μ2
= 1 + ν2

1 + ν1

1 − ν1

1 − ν2
,

(
1

3
<

μ1

μ2
< 3

)
. (5.7.2)

when α = 1, at the end of interfacial cracks and also at the edge of the contact
area of an elastic punch with another elastic body, the singularity 1/2, typical for
homogeneous materials, is preserved even under stick conditions.
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For clarity, we provide the direct solution of the boundary value problem,
Eqs. (5.5.20)–(5.5.22), when α = 1. Using this solution, we can establish also the
exact analytic solution of the corresponding class of singular integral equations; see
Eq. (5.6.12).

Let us introduce a new function Γ (z) which is analytic where the function Φ(z)
is analytic:

Γ (z) = Φ(z̄) = Φ̄(z). (5.7.3)

And so, on the x− axis when y = 0, we have:

Γ + = Φ−, Γ − = Φ+. (5.7.4)

Using this function, the boundary value problem, Eqs. (5.5.20)–(5.5.22), can be
written as follows (when α = 1):

Φ+ + Φ− = p(x), Γ + + Γ − = p(x); (x ∈ L1) (5.7.5)

Φ+ − Φ− + Γ + − Γ − = 0; (x ∈ L2) (5.7.6)

( f + i)Φ+ + ( f + i)Φ− + ( f − i)Γ + + ( f − i)Γ − = 2τ(x); (x ∈ L2) (5.7.7)

Φ+ − Φ− = d(x), Γ − − Γ + = d(x), (x ∈ L3). (5.7.8)

Hence, for the analytic functions F(z) and G(z) where

F(z) = Φ(z) + Γ (z), G(z) = Φ(z) + f − i

f + i
Γ (z) (5.7.9)

we obtain the following two Riemann boundary value problems for F(z) and G(z)
that can be independently solved:

F+ + F− = p(x) + p(x),G+ + G− = f − i

f + i
p(x) + p(x); (x ∈ L1) (5.7.10)

F+ − F− = 0, G+ + G− = 2

f + i
τ(x); (x ∈ L2) (5.7.11)

F+ − F− = d(x) − d(x), G+ − G− = d(x) − f − i

f + i
d(x). (x ∈ L3) (5.7.12)

According to Eq. (5.7.9), the sought function Φ(z) is expressed in terms of the
solution of these boundary value problems as follows:
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Φ(z) = 1

2
{(1 + f i)F(z) + (1 − f i)G(z)}. (5.7.13)

The canonical functions for these boundary value problems are obviously differ-
ent. The nodes of the Riemann problem for the function F(z) are the points z = ak
which are the ends of segments L1 while the nodes of the Riemann problem for
the function G(z) are the points z = bk which are the ends of segments L3 . As a
reminder, the x− axis is the sum L1 + L2 + L3.

The canonical functions XF (z) and XG(z) of the Riemann problems for F(z) and
G(z) are the following products:

XF (z) = (z − a1)
−1/2(z − a2)

−1/2 . . . (z − an)
−1/2; (5.7.14)

XG(z) = (z − b1)
−1/2(z − b2)

−1/2 . . . (z − bm)−1/2. (5.7.15)

The number n in Eq. (5.7.14) is even, if the original boundary value problem
of Eqs. (5.7.1)–(5.7.3) belongs to class S when its solution satisfies Saint-Venant’s
principle. The number n is odd, if the boundary value problem of Eqs. (5.7.1)–(5.7.3)
belongs to class N in which Saint-Venant’s principle is not valid.

The same assertion holds for Eq. (5.7.15). As a reminder, in the problems of class
N the resultant force and moment at infinity are infinite. It has been proven [2] that
the set of problems of class N in the theory of elasticity is equivalent to the set of
problems of class S. In plain terms, the number of problems in which Saint-Venant’s
principle is not valid is not less than the number of problems in which this principle
is valid.

Using the canonical functions XF (z) and XG(z), the closed solution of the Rie-
mann problems of Eqs. (5.7.10)–(5.7.12) for F(z) and G(z) is given by Gakhov’s
equations. This is the method of a closed solution for the general boundary value
problem of Eqs. (5.7.1)–(5.7.3) when α = 1.

5.8 The Problem of a Flat Punch

To understand the development of slip areas and adhesion effect, let us start from
the simplest problems. For this purpose, we will confine ourselves by the problem
of one absolutely rigid wheel/punch which starts rolling over the free surface of the
elastic half-plane y ≤ 0 under plane-strain conditions when Poisson’s ratio of the
material is equal to ½. In this section, the curvature radius of the punch is assumed
to be very large so that we will call it flat.

In this case, the stresses and displacements in the lower half-plane can be rep-
resented in terms of the single function Φ(z) which is analytic everywhere in the
whole z− plane outside the cut along the real axis representing the contact area:

σx + σy = 4ReΦ(z), σy − iτxy = Φ(z) − Φ(z̄) + (z − z̄)Φ ′(z) (5.8.1)
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Fig. 5.3 A local slip zone at the edge of a punch

2μ

(
∂u

∂x
+ i

∂v

∂x

)
= Φ(z) + Φ(z̄) − (z − z̄)Φ ′(z). (5.8.2)

The free boundary conditions outside the contact area are satisfied automatically.
This functionΦ(z)was introduced byN. I.Muskhelishvili; it differs from the author’s
function used in previous sections.

The corner edge of the punch. Suppose a semi-infinite flat punch is situated at
y = 0, x < 0,while the remaining part of the surface of the lower half-plane is stress
free. This problem describes the field of the stresses and strains in the small region
of the corner edge of any punch. The corner point of the punch is at the coordinate
origin, while the slip area is nearby at y = 0, 0 > x > −l. The stick-and-slip
boundary conditions have the following form (Fig. 5.3):

∂v

∂x
= 0, τxy + f σy = τs, (y = 0, 0 > x > −l) (5.8.3)

∂u

∂x
+ i

∂v

∂x
= 0, (y = 0, x < −l) (5.8.4)

And so, at x < −l we get the stick and, at 0 > x > −l, slip conditions.
This boundary value problem belongs to class N where Saint-Venant’s principle

is not valid; the resultant force and moment of stresses at infinity are infinite. In this
case the condition at infinity is written as follows:

Φ(z) = −KT + i KN√
z

+ o
(
z−1/2

)
. (5.8.5)

Here,
√
z is analytic outside the cut along y = 0, 0 > x > −∞ and positive

when y = 0, x > 0; KT and KN are some parameters, which are determined from
the solution of problems for punches of finite size (the sign of KT and KN is identical
with the sign of the shear and normal stresses on the stick area as x → −∞).

According to Eqs. (5.8.1), (5.8.2), (5.7.3), and (5.7.4), the boundary value problem
of Eqs. (5.8.3) and (5.8.4) can be written as

Φ+ + Φ− − 0, Γ + + Γ − = 0; (y = 0, x < −l)
(Φ − Γ )+ = −(Φ − Γ )−,

[Φ(1 − i f ) + Γ (1 + i f )] = 2iτs · (y = 0,−l < x < 0)
(5.8.6)
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From here, it follows that (Φ − Γ )+ = −(Φ − Γ )− on the whole semi-axis
x < 0. Since Φ(z) = Φ̄(z), we get its solution using Eq. (5.8.5) at infinity:

Φ(z) − Γ (z) = −2i KN√
z

. (5.8.7)

Using Eqs. (5.8.6) and (5.8.7), we obtain the following boundary value problem:

Φ+ = −Φ−, (y = 0, x < −l);
Φ+ − Φ− = iτs − 2KN (1 + i f )√|x | , (y = 0, 0 > x > −l)

(5.8.8)

The solution of this problem, which satisfies Eq. (5.8.5) at infinity, has the form

Φ(z) = −KT + i KN√
z + l

− 1

2π i
√
z + l

l∫

0

(
iτs − 2KN

1 + i f√
r

)√
l − r

r + z
dr

= 1√
z + l

(
−KT − f KN + 1

π
τs

√
l

)
+ KN

f − i√
z

− τs

2π
ln

√
l + z + √

l√
l + z − √

l
.

(5.8.9)

Hence, this slip area along −l < x < 0 is a typical slip fracture, studied in the
theory of adhesion of materials (see [2], pp. 363–368). The development of a slip
fracture is determined by the shear stress intensity factor KI I on its growing edge
z = −l; based on Eq. (5.8.9), it is equal to

KI I = 4
√
2π

(
KT + f KN − 1

π
τs

√
l

)
. (5.8.10)

Since the open-mode stress intensity factor at the edge of any slip fracture is
always equal to zero, the local slip condition has the form ([2], p. 366)

KI I = KI IC . (5.8.11)

Here, KI IC is the slip toughness, characterizing the strength of adhesion of two
materials (in this case the materials of the punch and the half-plane). It is related to
their specific adhesion energy Γc for slip as follows ([2], p. 368) :

Γc = κ3

4μ(1 + κ)
K 2

I IC . (5.8.12)

By Eqs. (5.8.10) and (5.8.11), the size of the slip area under the punch is given
by the formula
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√
l = π

τs

(
KT + f KN − 1

4
√
2π

KI IC

)
. (5.8.13)

Suppose the punch starts moving in the direction of the x− axis. A flat punch can
be considered as a circular wheel of extremely large radius rolling over the elastic
half-plane, since the stick of a roller at least over some part of the contact area is a
necessary condition for rolling.

And so, the current problem can also describe the field near the edge of a roller
so that the point z = 0 will be the leading edge of the roller, while the parameter KT

will be positive. Since KN is always negative in contact problems, from Eq. (5.8.13)
it follows that the slip area comes out when the parameter KT reaches the critical
value KTC

KTC = − f KN + 1

4
√
2π

KI IC . (5.8.14)

After that, the size of the slip area increases proportionally to (KT − KTC)2 .
Suppose now that the punch starts moving in a direction opposite to the direction

of the x− axis. In this case, the corner point z = 0 will be the trailing edge of the
punch, and the parameter KT will be negative. Since its sign is the same as the sign
of the shear stress on the contact area, the slip condition on the slip area should be
written in the form τxy − f σy = −τs so that in Eqs. (5.8.9)–(5.8.13) we must change
the sign in front of f, τs and KI IC . As a result, Eqs. (5.8.13) and (5.8.14), and also
the conclusion about the origination and growth of the slip area, are retained for the
absolute value of KT .

It should be noted that, when the punch moves in the direction of the x− axis, a
frontal resistance force acts on the leading edge of the punch, which is determined by
the term KN ( f − i)/

√
z in Eq. (5.8.9). From here, it follows that the stress intensity

factors KI and KI I on the leading edge z = 0 are equal to

KI = 2
√
2πKN , KI I = 2 f

√
2πKN . (5.8.15)

Hence, the frontal resistance force ΓR acting on the leading edge of the punch is
equal to

ΓR = 1

8μ

(
K 2

I + K 2
I I

) = π

μ

(
1 + f 2

)
K 2

N . (5.8.16)

This force is close to the energy dissipation spent per unit length of the path of
the punch. The resultant force of normal stresses applied to the semi-infinite punch
is infinite as it is common for the problems of class N .

As a result, the solution of the problem of the initial slip at the corner point of an
arbitrary punch under loading conditions is determined by the following function:
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Φ(z) = KT + i KN√
z

when 0 < KT < KTC ; (5.8.17)

Φ(z) = − KI IC

4
√
2π(z + l)

+ KN
f − i√

z
− τs

2π
ln

√
z + l + √

l√
z + l − √

l
when KT > KTC .

(5.8.18)

Here, l is determined by Eq. (5.8.13).
Now, let us assume that,when KT > KTC , beginning fromacertain KT , unloading

occurs; i.e., KT is reduced in value. The value of l initially remains the same as before,
but the field is reorganized in accordance with Eq. (5.8.18), in which the quantity
KI IC is replaced by the decreasing quantity KI I given by Eq. (5.8.10). When KI I

vanishes, l decreases, and the field is determined by Eqs. (5.8.13) and (5.8.18) at
KI IC = 0.

Hence, the condition of “finiteness of the stresses,” usually assumed in contact
problems, can hold only for some unloading conditions or provided that KI IC 

τs

√
l. These conditions determine the limits of applicability of the solutions of the

classical contact problem, in which the adhesion forces between the punch and the
base are ignored.

This solution given for a semi-infinite punch describes asymptotically the begin-
ning of the growth of the slip area from any corner edge of any punch.

A flat punch of finite dimensions. Let us study the classical problem of a rigid
flat punch which starts moving on the boundary y = 0 of a lower elastic half-plane
in the direction of the x− axis. Suppose the edges of the punch at x = ±a are its
corner points, and there are two slip areas at a − l < |x | < a and a stick area at
|x | < a − l so that we have:

∂u

∂x
+ i

∂v

∂x
= 0 when |x | < a − l, y = 0;

∂v

∂x
= 0, τxy + f σy = τs when a − l < |x | < a, y = 0. (5.8.19)

Suppose that (X,Y ) is the principal vector of the external forces applied to the
punch. In this section, we will assume that the moment of these forces is ignorably
small and that ∂v/∂x = 0 in the whole process.

First, we will consider the onset of the process by which the slip areas develop
near the corner points. At the beginning, the size l of the slip areas will be the same
at both edges of the punch and small compared with a so that the elastic field far
from the slip areas can be represented by the following function:

Φ(z) = − X + iY

2π
√
z2 − a2

,
(√

z2 − a2 → z as z → ∞
)
. (5.8.20)

Comparing this field at z → ±a with the beginning of the process described by
Eq. (5.8.5), we obtain the parameters KT and KN which characterize the slip areas
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near the edges of the punch:

the leading edge z = +a : KT = X

2π
√
2a

,

the trailing edge z = −a : l KT = − X

2π
√
2a

,

KN = Y

2π
√
2a

;

KN = Y

2π
√
2a

.

(5.8.21)

When loading, the slip areas occur after the condition of Eq. (5.8.14) is satisfied,
and they increase provided that

|X | > − f Y + 1

2
KI IC

√
πa. (5.8.22)

Set ofEqs. (5.8.9), (5.8.17), (5.8.18), and (5.8.21) provides the asymptotic solution
of the boundary value problem of Eq. (5.8.19) for small slip areas when l 
 a.

Wenow turn to the general case of a finite punchwith slip areas of any dimensions.
Using the method of Sect. 5.7, we derive the solution of the boundary value problem
of Eq. (5.8.19); as a result, we obtain

Φ(z) = 1

2π
√
z2 − b2

⎧
⎪⎨

⎪⎩
−X − iY +

∫

b<|x |<a

⎛

⎜
⎝τs − Y (1 + i f )

π
(√

x2 − a2
)+

⎞

⎟
⎠

√
x2 − b2

x − z
dx

⎫
⎪⎬

⎪⎭

= Y ( f − i)

2π
√
x2 − a2

+ 1

2π
√
x2 − b2

(
−X − f Y + 2τs

√
a2 − b2

)

+ τs

2π
ln

√
z2 − b2 − √

a2 − b2√
z2 − b2 + √

a2 − b2
. (5.8.23)

Here, b = a − l;
√
z2 − a2 and

√
z2 − b2 → zasz → ∞ .

For very small slip areas when l 
 a, Eq. (5.8.9) follows from Eq. (5.8.23).
According to Eqs. (5.8.5) and (5.8.23), the parameters KT and KN on the leading

edge of the punch are equal to

KT = − f Y

2π
√
2a

, KN = Y

2π
√
2a

. (5.8.24)

From here, using Eqs. (5.8.15) and (5.8.16) we find the stress intensity factors
and the front resistance at the leading edge of the punch:

KI = Y√
πa

, KI I = − f Y√
πa

, ΓR = 1 + f 2

8πaμ
Y 2. (5.8.25)

It can be shown that the opposite force of the same value is applied at the trailing
edge of the punch.
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Fig. 5.4 Shear drag versus slip growth

Using Eq. (5.8.23) and the local slip condition of Eq. (5.8.11), we obtain the
equation which determines the size of the slip area of any size

X + f Y = 2τs
√
a2 − b2 + 1

2
KI IC

√
πb. (5.8.26)

The slip areas first occur when the condition of Eq. (5.8.22) is met.
Using dimensionless numbers, let us write Eq. (5.8.26) as follows (Fig. 5.4):

�

X = − f
�

Y +
√

1 − �

b
2

+ λ

√
�

b. (5.8.27)

Here,

λ = 1

4τs
K I IC

√
π

a
,

�

X = X

2aτs
,

�

Y = Y

2aτs
,

�

b = b

a
. (5.8.28)

On its physical meaning, the number λ can be called the brittleness number.

The function
�

X = �

X

(
�

b

)
always has one maximum in the interval (0, 1) . It

means that initially, as the shear force X increases, the slip areas grow stably. Then,
on reaching a maximum, “pop-in” occurs and the slip areas rapidly grow in an
unstable way, merging at the center. At this moment, the punch undergoes a jump in
the direction of the x− axis. And so, the present solution presents the theory of the
“stick–slip” phenomenon, well-known from literary sources.

Let us designate themaximumvalue of the shear force X by Xm and the coordinate
of the end of the right slip area at this instant by bm . By Eq. (5.8.28), the brittleness

number λ depends only on the ratio
�

bm = bm/a and is equal to
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λ = 2
�

bm

√√√√√
√

�

bm

1 −
(

�

bm

)2 . (5.8.29)

For example, for small values of bm/a we have:

λ = 2(bm/a)3/2 (5.8.30)

In the opposite case, when bm/a is close to 1, we have:

λ = √2a/(a − bm). (5.8.31)

In the limiting cases, the maximum value of the shear force X is equal to X p for
the ideally plastic flow (yielding) and Xb for the ideally brittle fracturing so that:

for plastic f low as λ 
 1 : X p = − f Y + 2aτs,
�

bm = (λ/2)2/3;
for bri t tle f racture as λ � 1 : Xb = − f Y + 1

2
KI IC

√
πa,

�

bm = 1 − 2λ−2.

(5.8.32)

In the case of an ideally brittle fracture, the slip cracks develop unstably from the
very beginning, while in the case of an ideally plastic flow the slip lines from both
ends develop stably until they merge at the center (Fig. 5.5).

Fig. 5.5 From ideally brittle fracture to ideally plastic flow
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We note also a simple relation:

Xb

X p
= λ − f

�

Y

1 − f
�

Y
. (5.8.33)

For any brittleness number, in order for the punch to shift and for merging to
occur, the following force must be applied to the punch:

Xm = − f Y + 2aτs

⎛

⎝

√

1 −
(

�

bm

)2

+ λ

√
�

bm

⎞

⎠+ 1 + f 2

8πaμ
Y 2. (5.8.34)

Here,
�

bm is defined by Eq. (5.8.29) as a function of λ.
Formula of Eq. (5.8.34) provides the maximum resistance to the motion of the

flat punch under “stick–slip” conditions.

5.9 Stick-and-Slip Effects While Rolling

In Chap. 3, we studied in detail the normal mode of rolling when no sliding, or stick,
conditions hold over the whole contact area of a roller and a base. In this section, we
consider other possible modes of rolling including the breakdown or slip mode, in
which slip covers the whole contact area, and the most realistic stick-and-slip mode,
in which slip covers some part of the contact area near its ends while stick conditions
hold over the remaining contact area.

For more clarity, we will confine ourselves by the rolling of an absolutely rigid
cylinder of radius R on an elastic half-plane under plane-strain conditions, and
assume that Poisson’s ratio of the material is equal to 0.5. In this section, we will
again use Kolosov–Muskheishvili’s function Φ(z) and Eqs. (5.8.1) and (5.8.2) for
stresses and strains. As a reminder, Φ(z) is analytic in the whole z−−plane outside
the cut on the real axis corresponding to the contact area.

Rolling of a heavy cylinder of weight N occurs under the action of a tangential
driving force T which is much less than N ; both are applied to the center of the
cylinder and counted per unit of its length. At rest, the vector (T, N ) always eyes
inside the contact area and at the edge of the contact area while rolling. We consider
rolling as a result of monotonous increase of T at N = const.

Stick mode with account of adhesion and roughness of contact surfaces. Adhe-
sion of the roller and base materials causes local tensile stresses near the trailing edge
and increases local compressive stresses near the leading edge while the roughness
of contact surfaces does an opposite effect. As a result, adhesion increases the size of
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contact area while roughness decreases it. These effects often can be ignored because
adhesion and roughness act in opposite directions and often cancel one the other. It
is only in the case of very smooth or very rough surfaces that they must be taken
into account. Evidently, adhesion prevails for very smooth surfaces and roughness
for very rough.

Let us estimate the effects of the adhesion and roughness using the solution of the
contact problem singular at both leading and trailing edges of the contact area:

Φ(z) = μi

R

(
z − 2z2 − a2 − N R(πμ)−1

2
√
z2 − a2

)
+ T

2π
√
z2 − a2

. (5.9.1)

According to Eq. (5.8.2), this function satisfies the boundary condition of the stick
mode ∂u/∂x + i∂v/∂x = i x/R on the contact area |x | < a and the condition at
infinity Φ(z) = (T + i N )/(2π z) as z → ∞ .

The stresses on the contact area will be as follows:

σx = σy = μ

R

2x2 − a2 − N R(πμ)−1

√
a2 − x2

, τxy = T

π
√
a2 − x2

. (y = 0, |x | < a)

(5.9.2)

when the rolling occurs, the vector (T, N ) is directed to the leading end of the contact
area and both ends of the contact area are in the limiting state so that

σy = ±
√
2μΓc

πε
where ε = a − |x | → 0, y = 0. (5.9.3)

Here, Γc is the interfacial constant characterizing adhesion force between real
rough surfaces of the cylinder and the foundation. The sign in Eq. (5.9.3) is positive
when adhesion prevails over the resistance to roughness and negative when the effect
of roughness is greater.

From Eqs. (5.9.2) and (5.9.3), it follows that

a2 = R

πμ

(
N ± 2

√
πaμΓc

)
. (5.9.4)

Suppose the adhesion forces predominate. In this case, at the points x = ±x∗ of
the contact area where

x∗ = ± R

πμ

(
N +√πμaΓc

)
, a2 − x2∗ = R

√
aΓc/(πμ) (5.9.5)

the stress σy is equal to zero. According to Eq. (5.9.5), we can neglect the adhesion
forces and roughness only when the following condition is satisfied:

4R2Γc 
 πμa3. (5.9.6)
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Let us write Eq. (5.9.5) as follows:

( x∗
R

)2 =
( a
R

)2 − λ1/2
( a
R

)1/2
where λ = Γc

πμR
. (5.9.7)

From here, it follows that when a3 < λR3 all contact area is under extension and
tensile stresses, which describes the situation when a certain force balanced by the
adhesion force and the weight of the cylinder is trying to pull it from the half-plane
(Fig. 5.6). When a3 > λR3, the x∗ increases as a increases so that in the limit we
have x∗ → a; see Eq. (5.9.6).

Let us determine the necessary condition for uniform rolling of a cylinder acted
upon by a traction force T . By combining the equation of moments for rolling
T R = aN with Eq. (5.9.4) under the prevailing adhesion forces condition, we
obtain

N̄ = m2 − √
λm,

(
m = T

N
, N̄ = N

πμR
, λ = Γc

πμR

)
(5.9.8)

The region to the left of this curve N̄ = N̄ (m) in the mN̄ plane corresponds
to rest (no rolling), while the region to the right corresponds to accelerated motion
of the cylinder by the traction force greater than the minimum value required to
overcome the friction forces on the contact area (Fig. 5.7). When m ≤ λ1/3 we will

have −3

4

(
λ

2

)2/3

≤ N̄ ≤ 0; this part of the curve corresponds to inform rolling

of a cylinder of weight N , suspended from an upper elastic half-plane and held to
it by adhesion forces. In this region, two values of T correspond to each value of
N , for the lesser of which equilibrium is unstable, while for the larger one it is
stable. In this case, the maximum weight that can be held by the adhesion forces is

Fig. 5.6 Balance diagram of a cylinder on the elastic half-plane in the stick mode
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Fig. 5.7 Weight versus traction diagram of rolling in the stick mode

N = 3

4
πμR(λ/2)2/3 . In the region of positive N > 0, the value of N increases

monotonically as m increases so that when N � πμR(λ/2)2/3 the effect of the
adhesion forces and the roughness can be neglected and we can assume that Γc = 0.

In a typical case of comparatively weak effects of adhesion and roughness, the
solution of Eq. (5.9.4) can be written as

a2 = R

πμ

(
N ± 2(πμRN )1/4Γ 1/2

c

)
. (5.9.9)

In this case, the laws of rolling which take into account the effect of adhesion and
roughness on both ends of the contact area are as follows:

M

N
= T R

N
=
√

R

πμ

[
N ± 2(πμRN )1/4Γ 1/2

c

]
. (5.9.10)

Also, we can conclude that the optimum conditions for rolling are the same con-
ditions for which the effects of adhesion counteract those of roughness so that the
equality Γc = 0 is valid. Besides, the effect of adhesion and roughness is less pro-
nounced for the motion than in the state of rest.

Slip mode. Application and increase of the traction force are accompanied by
the growth of shear stresses on the contact area and the development of local slip
areas, until limits of the resistance forces on the contact area are reached, after which
instantaneous development of slip areas occurs, which grip the whole contact area so
that the cylinder skids and rolling friction sharply falls. Before turning to the general
stick-and-slip mode, we will consider this limiting case of the skidding of a cylinder,
when the slip covers the whole contact area.
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Suppose Coulomb’s Law of friction is valid on the whole contact area |x | < a,

y = 0. It is easy to find the following classic solution of this problem for a heavy
cylinder on the surface of an elastic half-plane:

Φ(z) = μ

R
(i − f )

(
z −

√
z2 − a2

)
− τs

2π
ln

z + a

z − a
. (5.9.11)

Here,

a2 = N R

πμ
; when z → ∞

√
z2 − a2 → z, ln

z + a

z − a
→ 2a

z
. (5.9.12)

The stresses and displacements on the contact area are as follows:

σy = −μ

R

√
a2 − x2, τxy = f σy + τs,

∂v

∂x
= x

R
. (5.9.13)

In this case, the laws of the uniform motion of a cylinder are simple:

T = f N + 2τs

√
N R

πμ
for sliding; (5.9.14)

T = N 3/2

√
πμR

for rolling. (5.9.15)

These modes of motion are competing one with the other.
Evidently, in the process of increasing the traction force T the rolling starts first,

if the following inequality is satisfied:

√
N

πμR
< f + 2τs

√
R

πμN
. (5.9.16)

Otherwise, the sliding starts first whichmeans the slipmode occurs characterizing
the breakdown or emergency motion.

Let us write Eqs. (5.9.15) and (5.9.14) as follows (Fig. 5.8):

T∗ = N 3/2
∗ for rolling; T∗ = f N∗ + τ∗

√
N∗for sliding. (5.9.17)

Here,

T∗ = T

πμR
, N∗ = N

πμR
, τ∗ = 2τs

πμ
. (5.9.18)

According to the graphs of Eq. (5.9.17) on the N∗T∗ plane, the value of T∗ for
rolling is less than for sliding when 0 < N∗ < NT while it is greater than for sliding
when N∗ > NT where the threshold value of N∗ is equal to
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Fig. 5.8 Traction versus weight diagram of the slip mode of rolling

NT = 1

4

(
f +

√
f 2 + 4τ∗

)2
. (5.9.19)

From this, it follows that the breakdown or emergency state of sliding mode
happens when the following inequality is satisfied

NT < W (πnwμR)−1. (5.9.20)

Here, W is the weight of a vehicle, n is the number of its wheels, and w is the
width of the rut of the wheels.

In order to overcome the sliding mode, we should considerably increase the trac-
tion force T to shift up to the rolling mode on the N∗T∗ plane.

Stick-and-slip mode. The rolling in the stick-and-slipmode allows one to achieve
the greatest traction force.

Let us first consider the development of small slip areas near the edges of the
contact area. In the stick mode of the rolling, described in Chap. 3, the no-slip
condition breaks down near the edges of the contact area, where slip areas start to
develop from.

For small slip zones, matching the asymptotics of solutions in Eqs. (5.8.9) and
(5.9.1) by Eqs. (5.8.5), (5.8.10)–(5.8.14), when KT > KTC , we obtain:

KN = 0, KT = T

2π
√
2a

, KTC = KI IC

4
√
2π

,
√
l = 1

2τs
√
2π

(
T√
πa

− KI IC

2

)
.

(5.9.21)

Consequently, when 2T < KI IC
√

πa, slip areas will not occur near the edges
of the contact area despite the infinitely high value of shear stresses (and the zero
normal stresses), and when 2T > KI IC

√
πa, the slip areas will increase stably as T

increases (Fig. 5.9).
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Fig. 5.9 Slip growth versus traction at the beginning of the slip

In the case of significant adhesion forces and roughness, according to Eqs. (5.9.1)
and (5.9.9), we have

KT = T

2π
√
2a

, KN = μ

2R
√
2a

(
a2 − N R

πμ

)
,

√
l = 1

2τs
√
2π

(
T√
πa

+ 2 f
√

μΓc − 1

2
KI IC

)
. (5.9.22)

We recall that in this case, Γc corresponds to the open mode while KI IC corre-
sponds to the shear mode. According to Eq. (5.9.22), no-slip areas occur so long as
2T <

√
πa
(
KI IC − 4 f

√
μΓc

)
, and then they increase stably as T increases when

2T >
√

πa
(
KI IC − 4 f

√
μΓc

)
.

As a reminder, all the previous equations correspond to a certain way of loading,
namely initially by a normal force N and then by a shear force T for constant N . In
the case of other loading ways, the corresponding equations can be different.

In the general case, we have the following boundary value problem:

when y = 0, |x | < b : ∂u

∂x
+ i

∂v

∂x
= i

x

R
; (5.9.23)

when y = 0, b < |x | < a : ∂v

∂x
= x

R
, τxy + f σy = τs . (5.9.24)

An external force (T,−N ) is applied to the cylinder center when T > 0, N > 0.
It is required to determine the size of the stick area (2b) and the contact area (2a)

and also the necessary condition for uniform rolling.
According to Eqs. (5.8.1) and (5.8.2), functionΦ(z), analytic everywhere outside

the cut (−a,+a) of the z− plane, by Eqs. (5.9.23) and (5.9.24), must be found from
the following boundary value problem:

when y = 0,−b < x < b : Φ+ + Φ− = 2iμ
x

R
; (5.9.25)

when y = 0, b < |x | < a :
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Im
(
Φ+ + Φ−) = 2μ

x

R
, Im

(
Φ+ − Φ−)− f Re

(
Φ+ − Φ−) = τs . (5.9.26)

This is a generalized Riemann boundary value problem. Using the method
described above in Sect. 5.7, we arrive at the following solution of this problem
in the class of integrable analytic functions:

Φ(z) = i
μ

R
z + μ

R
( f − i)

z2 − 1

2
a2 − RN

2πμ√
z2 − a2

+ τs

2π
B(z)

− f
μ

R

z2 − 1

2
b2 + R

2π f μ
(T − f N ) − Rτs

π f μ

√
a2 − b2

√
z2 − b2

. (5.9.27)

Here,

B(z) = ln

√
z2 − b2 − √

a2 − b2√
z2 − b2 + √

a2 − b2
; B(z) → −2

√
a2 − b2

z
asz → ∞;

Φ(z) → −T − i N

2π z
,
√
z2 − a2 → z,

√
z2 − b2 → zasz → ∞.

The function B(z) is analytic outside the cut (−a,+a) of the z− plane, where
B+ + B− = 0 when |x | < b and ImB(z) = ±π i when b < |x | < a .

According to Eq. (5.9.27), the stresses on the contact area are as follows:

σy = μ

R

2x2 − a2 − RN

πμ√
a2 − x2

when − a < x < +a; (5.9.28)

τxy = − f μ

R

⎛

⎜
⎜
⎝

x2 − 1

2
a2 − RN

2πμ√
a2 − x2

−
x2 − 1

2
b2 + R

2π f μ
(T − f N ) − Rτs

π f μ

√
a2 − b2

√
b2 − x2

⎞

⎟
⎟
⎠

− τs

π
θ when |x | < b;

τxy = − f μ

R

x2 − 1

2
a2 − RN

2πμ√
a2 − x2

+ τs when b < |x | < a;

θ = tan−1
2
√(

a2 − b2
)(
b2 − x2

)

x2 + a2 − 2b2
.

In accordance with this specified way of loading, when initially N increases at
T = 0, and then T increases at N = const, the size of the contact area 2a is
established in the first stage when T = 0 and b = a. From the law of energy
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conservation, it follows that at this stage

σy = ±2

√
μΓc

2πε
when y = 0, x = a − ε, ε 
 a. (5.9.29)

The plus sign corresponds to the prevailing effect of the adhesion forces, while
the minus sign corresponds to the predominating effect of the roughness resistance.
The value of Γc is equal to the elastic energy expended in forming unit square of the
contact area.

Hence, using Eqs. (5.9.28) and (5.9.29), we obtain in the first stage

a2 = RN

πμ
± 4R

√
aΓc

πμ
. (5.9.30)

The application of force T , at the second stage, according to Eq. (5.9.28) gives
rise to shear stresses on the contact area and, starting from a certain critical value of
force T, to the development of a slip area, but the value of a remains unchanged in
order to satisfy the non-penetration condition.

The following condition should be satisfied at the edge of the growing slip area

τxy = KI IC√
2πε

when y = 0, x = b − ε, ε 
 b. (5.9.31)

Here, KI IC is the slip toughness which is related to the specific adhesion energy
by Eq. (5.8.12).

Hence, using Eqs. (5.9.28) and (5.9.31), we arrive at the following equation:

b2 + R

π f μ
(T − f N ) − 2Rτs

π f μ

√
a2 − b2 = 2

R

f μ
KI IC

√
b

μ
. (5.9.32)

Let us write down this equation in terms of six dimensionless variables:

T∗ = f N∗ − b2∗ + τ∗
√
a2∗ − b2∗ + λ

√
b∗. (5.9.33)

Here,

T∗ = T

π f μR
, N∗ = N

π f μR
, a∗ = a

R
, λ = 2KI IC

f μ
√

πR
, b∗ = b

R
, τ∗ = 2τs

π f μ
.

(5.9.34)

It can be shown that, for any positive λ and τ∗, there is always a single maximum
b∗ = bm of the function T∗ = T∗(b∗) in the range 0 < b∗ < a∗ .
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This maximum is the unique root bm = bm(a∗, τ∗, λ) of the following equation:

λ

(bm)3/2
− 2τ∗√

(a∗)2 − (bm)2
= 4. (5.9.35)

Let us note two limiting cases when it is easy to find the roots of this equation:

bm =
(

a∗
4a∗ + 2τ∗

)2/3

when τ∗ � λ; (5.9.36)

bm = a∗ − 2

(
a∗τ∗

λ − 4(a∗)3/2

)2

when λ � τ∗. (5.9.37)

The maximum possible value of the driving traction T = Tm corresponding to
the root of Eq. (5.9.35) is

Tm = π f μR

[
f N∗ − (bm)2 + τ∗

√
(a∗)2 − (bm)2 + λ(bm)1/2

]
. (5.9.38)

Hence, no-slip areas occur, i.e., b = a, when traction T increases from zero
to T = π f μR

[
f N∗ − (a∗)2 + λ

√
a∗
]
. When T increases further, the slip areas

develop stably, until the maximum is reached when b∗ = bm and T∗ = Tm . Then,
the slip areas rapidly increase in the region of instability 0 < b∗ < bm and the loss of
the driving force occurs when T∗ < Tm . This is the same “stick–slip” phenomenon
described in Sect. 5.8 for the plane punch. In the rolling problem considered here,
this indicates skidding of the cylinder and almost no translational motion.
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Chapter 6
The Fracturing

Abstract This chapter concerns the phenomenon of leaks (gryphons) caused by the
growth of undetected cavities and fissures filled up by oil/vapor, between different
layers in laminated structures, acted upon by the pressure and temperature of the
penetrated fluid. This unaccounted process caused many catastrophes, including the
Chernobyl and Fukushima nuclear power stations’ disasters, and the summer 2010
disaster in the Gulf of Mexico as a result of the breakthrough of gryphons in two
boreholes. Therefore, a special attention is given to the development of casing string
gryphons and cylindrical gryphon cracks. The problem solutions using invariant
integrals are obtained in a closed, very effective shape. This chapter is for those who
work or interested in oil and gas industry, and for those who design and operate
nuclear power stations.

Application of invariant integrals to fracture mechanics began from this author’s
paper Crack propagation in continua published in J. Appl. Math. Mech. (JAMM),
31(3), 1967. It enabled one to characterize the carrier of the fracture process which
is the crack tip. In this chapter, some new, topical problems of fracture mechanics
are studied using invariant integrals. They concern the problem of delamination, the
problem of blisters, the problem of gryphons, and others.

6.1 The Delamination of a Film or Plate
from a Substructure

At first, let us consider an inextensible, absolutely flexible film/membrane which is
delaminated froma rigid foundation by a stretching force N . Let us assume conditions
of plane deformation; see the cross section inFig. 6.1, showing the delamination front.
When the delamination front moves, the following equation is obviously valid:

N = Γc/(1 − cosβ) where 0 < β ≤ π. (6.1.1)
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Fig. 6.1 Pulling-off a film from a solid

Here β is the angle between the foundation and the film, and Γc is the specific
adhesion energy characterizing the strength of their bond. Forβ ≥ π/2, this ismainly
the open-mode fracturing.

Equation (6.1.1) follows directly from the law of the energy conservation for the
inextensible, flexible film, since the length of the path traversed by the delamination
front is 2 sin(β/2) times smaller than the path traversed by the end of the inextensible
film to which force N is applied; this force deviates by angle π/2 − β/2 from the
direction of the path traversed by this force.

Function N = N (β) is monotonously decreasing when β increases so that:

N → 2Γc/β
2 as β → 0; N (π/2) = Γc; N (π) = Γc/2. (6.1.2)

The problem of delamination of thin films is very important for people and indus-
tries because everything we use is covered by either protective or decorative films,
from skin on human bodies to special coatings on stealth jets, and from the glaze
of porcelain to anticorrosive coatings of metals. Everything exists only because it is
protected by something thin and almost imperceptible. The strength and durability
of coatings determine the lifetime of almost any enclosure.

The latter two equations in Eq. (6.1.2) provide a simple but persuasive criterion
for the estimate of the strength of any coating; this criterion can serve the force N
necessary to tear off a coating from a substrate.

Now, let us discuss the effect of elasticity of a thin film that is delaminated by a
force from a rigid foundation (Fig. 6.2). We confine ourselves by small deformations

Fig. 6.2 Tearing-off a plate from a substrate
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so that, as distinct from the previous problem, the film is an elastic beam or strip
0 < y < h of thickness h bonded to a rigid substrate at y = 0, x > 0. Boundary at
y = 0, x < 0 and y = h is free from tractions. At infinity, when x → −∞, force N
and the bending moment M are applied (evidently, this force can have only the x-
component).

And so, we have the following boundary value problem for the strip:

σy = τxy = 0 when y = 0, x < 0 and y = h; (6.1.3)

u = v = 0 or v = 0, τxy = 0 when y = 0, x > 0. (6.1.4)

When

x → −∞: σx = N

h
− 12

M

h3

(
y − h

2

)
, σy = τxy = 0. (6.1.5)

Evidently, in this case, force N produces the cracking of shear mode while the
bending moment M brings about the open-mode crack.

This problem can be strictly solved by the Wiener–Hopf method, but we can
elementarily find the main result using the following invariant integral:

Γx =
∮ (

Unx − σi j n j ui,x
)
dS. (i, j = 1, 2) (6.1.6)

Here the closed contour of integration is an infinitesimal circle encompassing the
origin of coordinates x = y = 0.

Using the invariance of this integral, let us deform the contour of integration into
the boundary of the strip y = 0 and y = h, and two segments at x → ±∞, 0 < y <

h.Because of the boundary conditions, Eqs. (6.1.3)–(6.1.5), the integral in Eq. (6.1.6)
is not equal to zero only along the segment x = const → −∞, 0 < y < h.

And so, Eq. (6.1.6) is reduced to the following equation:

Γx =
h∫

0

(σxεx −U )dy = 1

2E

h∫
0

σ 2
x dy where x → −∞. (6.1.7)

Here nx = n1 = −1, σx = σ11 = Eεx , εx = u1,1, 2U = σxεx .

Using Eq. (6.1.5) for the asymptotic value of σx in Eq. (6.1.7), we easily derive:

Γx = N 2

2Eh
+ 6M2

Eh3
. (6.1.8)
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From this equation, we can also derive the values of the stress intensity factors of
fracture mechanics describing the open mode (KI ) and the shear mode (KI I ):

KI = 2
√
3

h
√
h
M, KI I = N√

2h
. (6.1.9)

Equation (6.1.8) was derived for the plane-stress condition, but it will be also
valid for the plane-strain condition if we multiply by 1 − ν2 the right-hand part of
this equation. The equation for the shear mode, the second Eq. (6.1.9), found an
application to the cutting of rocks and to the design of drilling bits in mining [1–3].

Evidently, the properties of a substructure/foundation can be essential, only if its
compliancy is comparable to the compliancy of a film/coating.

Also, it is important to keep inmind that Eqs. (6.1.1) and (6.1.8) embrace different
areas, namely Eq. (6.1.1) describes large deformations of very flexible, inextensible
plates, while Eq. (6.1.8) relates only to small deformations of elastic but very solid
plates.

Summary Generalizing the results obtained by Eqs. (6.1.1) and (6.1.8), we can
conclude that, basedon the principle of superposition and the principle ofmicroscope,
the basic invariant integral for small deformations of thin plates and shells obeys the
following law:

Γx = 1

2
Nβ2 + 1

2
keε

2
e + 1

2
kbR

−2. (6.1.10)

Here:

ke = E

h
, εe = N

E
, kb = 1

12
Eh3, R−1 = 12M/

(
Eh3

)
. (6.1.11)

The quantities ke and kb are the tensile and flexural stiffness, and εe and R−1 are
the extension and curvature of the middle line of the plate near the crack front. The
first and third terms in Eq. (6.1.10) describe the open mode while the second term
the tearing mode. The first term is essential only when N < βhE or N ∼ βhE .

Equation (6.1.11) is written for plane stress; in the case of plane strain, the value of
E in these equations should be replaced by E/

(
1 − ν2

)
.

The first term in Eq. (6.1.10) describes the work of the external force spent to
increase the free surface of the body per unit area, while the second and third terms
describe the loss of the elastic energy due to the same increase of the free surface.
Some applications of Eqs. (6.1.10) and (6.1.11) are brought about in next sections.
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6.2 Two Example Problems of Delamination

Let us consider two elastic films 1 and 2 that have been glued together and are
separated by forces N1 and N2 (Fig. 6.3). From the equilibrium condition, we have

N1 cosβ1 + N2 cosβ2 = N , N1 sin β1 = N2 sin β2. (6.2.1)

The notation is shown in Fig. 6.3. It is supposed that β1 + β2 ≤ π .
This equilibrium is possible only until the limiting state of delamination is

achieved which is, based on Eq. (6.1.1), characterized by the following equation:

Γc = N1(1 − cosβ1) + N2(1 − cosβ2). (6.2.2)

Here the specific energy Γc describes the strength of adhesion of both films.
Solving the equation system, Eqs. (6.2.1) and (6.2.2), provides the limiting forces

of delamination:

N1 =
Γc cos

β2

2

2 sin
β1

2
sin

β1 + β2

2

, N2 =
Γc cos

β1

2

2 sin
β2

2
sin

β1 + β2

2

, N = N1 + N2 − Γc.

(6.2.3)

In the case of the symmetric splitting, when β1 = β2 = β, we have

N1 = N2 = Γc

(
2 sin

β

2

)−2

, N = 2N1 − Γc. (6.2.4)

This solution determines the local forces of delamination near the edge of a bubble
of any shape between two glued, momentless membranes/films.

The Problem of Bubble Between Films Let us consider the problem of axisym-
metric cavity/bubble between two glued films that lie in a horizontal plane and are

Fig. 6.3 Glued films stretched by forces
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Fig. 6.4 A blister on the surface of a body

stretched by a force N in all horizontal directions. The bubble is assumed to be filled
with a gas under a pressure p. This problem is of interest for some medical and
biological applications.

The bubble is produced by the splitting of the film thickness. Because of the
adhesion, the bubble takes the shape of two spherical segments characterized by the
maximum height h, the curvature radius R, and the volume V (the segments are
different in the case of asymmetric splitting of the film).

And so, for the upper, with subscript 1, and lower, with subscript 2, segments of
the bubble, we have (Fig. 6.4):

R1 = 1

2
h1

(
1 + r2

h21

)
, V1 = π

6
h31

(
1 + 3

r2

h21

)
, N1 = 1

2
pR1; (6.2.5)

R2 = 1

2
h2

(
1 + r2

h22

)
, V2 = π

6
h32

(
1 + 3

r2

h22

)
, N2 = 1

2
pR2. (6.2.6)

p(V1 + V2) = RGMT . (6.2.7)

Here r is the radius of the common foundations of the upper and lower segments,
M and T is the mass and absolute temperature of the gas in the bubble, and RG is
the gas constant.

Equations (6.2.3)–(6.2.7) allow us to predict the development of the bubble in
terms of pressure, temperature, and mass of the gas injected into the cavity. For
example, in the case of symmetric splitting when h = h1 = h2, V1 = V2 = 0.5V,

R1 = R2 = R, and N1 = N2 = N0, we have:

2N0 = N + Γc = pR, pV = RGMT, R = 1

2
h

(
1 + r2

h2

)
, V = π

3
h3
(
1 + 3

r2

h2

)
.

(6.2.8)

2 sin
β

2
= (Γc/N0)

1/2. (0 < β < π/2) (6.2.9)
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At the beginning of the development, when the initial cavity satisfies condition
r � h, from Eqs. (6.2.8) and (6.2.9), it follows that:

r =
(
4

π
RG

)1/4(MT N0

p2

)1/4

, 2 sin
β

2
=
√

Γc

N0
, 2N0 = N + Γc. (6.2.10)

And so, the radius of the delamination cavity grows directly proportional to the
one-fourth degree ofMT N0 p−2 which is the only parameter it depends on. Evidently,
if this law is valid at the beginning, it will be valid afterward while r increasing.

A Problem of Local Buckling Suppose a body covered by a coating is subject to
some compression along its surface so that a portion of a delaminated coating can
loose stability and be torn off. Let us model this problem assuming the plane-stress
condition.

A coating layer of thickness h is split off from a half-plane on the length L , where
L � h. And so, we come to the following boundary value problem:

E I
d2v

dx2
= −Nv where I = h3

12
; (6.2.11)

v = 0 when x = ±L/2. (6.2.12)

Here v is the lateral deflection of the elastic beam supported at the ends, and N
is the value of the compressive force equal to h times the compressive stress in the
coating.

The end part of the beam is subjected to all three components of the loadings
considered in Sect. 6.1; see Eq. (6.1.11). The beam near its ends is tied to the body by
some adhesion forces which breakage can increase the beam length. In this modified
Euler’s problem, it is required to also take into account the splitting process.

Let us write down the solution of this boundary value problem as follows:

v = M

N
cos

(
x

√
N

E I

)
, β = M

N

√
N

E I
sin

(
L

2

√
N

E I

)
. (6.2.13)

Here M is the bending moment at x = ±L/2 after the buckling occurs.
At the moment of buckling, Euler’s relation is valid:

NL2 = π2E I. (6.2.14)

According to Eqs. (6.1.11) and (6.2.13), the values of β, M and N determine the
process of fracturing and delamination of the beam when

Γc = 6M2

Eh3
sin2

(
L

2

√
N

E I

)
+ N 2

2Eh
+ 6M2

Eh3
. (6.2.15)
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However, at the beginning the deflection of the beam was equal to zero, i.e.,
M = 0, so that summarizing Eqs. (6.2.14) and (6.2.15), we derive the following
value of the critical force N = N∗

N∗ = min
{√

2hEΓc, π
2E I L−2

}
. (6.2.16)

The buckling starts, only if 288L4Γc > π4Eh5. Otherwise, the process starts from
the delamination of the beam so that the value of L will increase until the Euler’s
critical force is achieved, after which the process of fracturing and delamination
becomes dynamical.

6.3 A Blister on the Body Surface

The Delamination of a Film from a Half-Space Let us discuss the problem of an
absolutely flexible elastic film/coating that is delaminated from a solid half-space
with the formation of an axisymmetric cavity by injecting gas into the cavity/blister
(Fig. 6.4). The displacement of the film under the action of a pressure p will be as
follows:

w = p

4N

(
b2 − r2

)
where r < b. (6.3.1)

Here b is the blister radius, and N is the tension of the film caused by the gas
injection. It is required to find p, b, and N in terms of mass of the gas injected. This
problem can model some skin illnesses in medicine, some accidental problems in
gas/oil industry, etc.

The film tension in the cavity is to be determined from the energy conservation
law Ep = Wp and Hooke’s law for the coating extension:

Ep = πhb2 · 1 − ν

E

(
N

h

)2

, Wp = 2πp

b∫
0

rw(r)dr = πp2b4

8N
. (6.3.2)

It is assumed that all work Wp of pressure inside the cavity turns into the energy
Ep of the elastic film. Then, from Eqs. (6.3.2), we get:

8(1 − ν)N 3 = hEb2 p2. (6.3.3)

According to Eq. (6.3.1), the angle β of the film on the delamination front is equal
to pb/(2N ). From here, using Eq. (6.1.11) for the limiting state on this front, we
obtain:
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Γc = b2 p2

8N
+
(
1 − ν2

)
N 2

2hE
. (6.3.4)

Since the volume of the cavity is equal to πpb4/(8N ), the state equation of the
gas in the cavity can be written as follows:

πp2b4 = 8RGNT M. (6.3.5)

Here T and M are the absolute temperature and mass of the gas in the cavity,
respectively.

From Eqs. (6.3.3) to (6.3.5), we find the required values of p, b and N :

b2 = (3 − ν)RG

2πΓc
T M, p2 = 8(1 − ν)2

hE2

N 5

RGT M
, N 2 = 2hEΓc

(1 − ν)(3 + ν)
.

(6.3.6)

The cavity radius increases in a stable manner in direct proportion to the square
root of the mass and absolute temperature of gas injected into the cavity. The tension
in the elastic film is found to be independent of mass of gas injected, and it is also
independent of the pressure and the cavity dimensions.

The Delamination of a Plate from a Rigid Half-Space Suppose an elastic plate
of thickness h, bonded to a rigid half-space, delaminates from it forming an axisym-
metric cavity between them, into which a gas is pumped under a pressure p. The elas-
tic displacement w of the plate is governed by the biharmonic equation	2w = p/kb
which solution can be written as follows:

w = p

64kb

(
b2 − r2

)2
, kb = Eh3

12
(
1 − ν2

) . (6.3.7)

Here it was assumed that the plate is clamped at the edge so that w = dw/dr = 0
at r = b. The values of b and p have to be found. This problem is characteristic for
the delamination of rigid coatings.

In this case, based on Eq. (6.1.11), the limiting condition at the cavity edge has
the form

Γc = kb/
(
2R2

)
. (6.3.8)

Here R is the radius of curvature in a section of the middle surface of the plate per-
pendicular to the delamination front at the correspondingpoint of the front.According
to Eq. (6.3.7), we have 1/R = pb2/(8kb) when r = b. Then, from Eq. (6.3.8), it
follows that

128kbΓc = p2b4. (6.3.9)
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Calculating the cavity volume using Eq. (6.3.7), the state equation of gas in the
cavity can be written as

πp2b6 = 192kbRGT M. (6.3.10)

From Eqs. (6.3.9) and (6.3.10), we determine the required quantities:

b2 = 3RG

2πΓc
T M, p = 16π

3RGT M

√
2kbΓ 3

c . (6.3.11)

Based on the Eqs. (6.3.6) and (6.3.11), the cavity radius for a film is only√
1 − (ν/3) times, i.e., practically by about 5%, less than the cavity radius for a

plate, if the adhesion energy is the same in both cases.

6.4 A Crack Between Layers in Laminated Composites

Let us discuss the general case of an interface crack in a laminated composite of
a bimetal type when both the longitudinal stretching of a composite plate and its
transverse bending are important. In this case, from Eq. (6.1.11), it follows that the
limiting condition on the front of an axisymmetric flat crack between two arbitrary
plates can be written in the form:

Γc = 1

2

2∑
i=1

[
Ni

(
dwi

dr

)2

+ kei N
2
i + kbi

(
d2wi

dr2

)2
]
, (6.4.1)

kei = 1 − ν2
i

hi Ei
, kbi = Eih3i

12
(
1 − ν2

i

) . (6.4.2)

Here all quantities characterize the flat crack front neighborhood, and i = 1 and 2
is related to the upper and lower layers inside the crack. Equation (6.4.1) is valid also
for curvilinear-in-plan cracks between layers, with r meaning the normal direction
to the crack front in its plane.

Let us consider the axisymmetric problem of the cracked, two-layer composite
plate stretched by a force N from all sides at infinity and subjected to the constant
pressure p inside the interface crack. This problem can characterize the main emer-
gency situation sometimes arising in the work of nuclear power stations as a result of
the development of interface cracks in the multilayered protective walls of nuclear
reactors due to some leaks of coolant. The catastrophes, which happened in Cher-
nobyl, Ukraine, in 1986, and in Fukushima, Japan in 2012, drew the attention of
scientists and engineers to this problem.

In this case, the value of the transverse displacement of each plate about a neutral
plane of zero bending stresses obeys the following equation which is valid for the
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layers inside the interface crack

kbi	
2wi + Ni	wi = (−1)i p, 	 = d2

dr2
+ 1

r

d

dr
, r < b, i = 1, 2. (6.4.3)

Here the sign before the constant load p is positive for the lower bank of the crack,
and negative for the upper bank. The value of p represents the pressure of gas inside
the crack.

The stretching forces Ni in the composite plate are determined from the com-
patibility condition of a common tensile deformation of layers and the equilibrium
equation. We have:

1 − ν1

E1

N1

h1
= 1 − ν2

E2

N2

h2
, N1 + N2 = N . (6.4.4)

From here, we find:

N1 = h1(1 − ν2)E1

(1 − ν2)h1E1 + (1 − ν1)h2E2
N , N2 = h2(1 − ν1)E2

(1 − ν2)h1E1 + (1 − ν1)h2E2
N .

(6.4.5)

Because of the structural asymmetry, these stretching forces give rise to a certain
bending moment Mr which is, about the interface border, equal to

Mr = 1

2

h21(1 − ν2)E1 − h22(1 − ν1)E2

(1 − ν2)h1E1 + (1 − ν1)h2E2
N . (6.4.6)

It leads to a bending of the bimetal plate, which takes the form of a paraboloid of
revolution close to a spherical segment with the curvature radius of the order of RB ,
where

RB = η

√
kb

|N1 − N2| , Mr = 1

η

√
kb|N1 − N2|, kb =

2∑
i=1

Eih3i
12
(
1 − ν2

i

) (6.4.7)

Here η is a constant. In the case of symmetry, we have N1 = N2, Mr = 0, RB →
∞.

We assume that the bending moment of the same value but of the opposite sign is
applied at infinity in order to remove this bending effect. Anyway, the effect of this
moment on the transverse displacement of the plates inside the crack, when r < b, is
negligibly small, and it can be ignored. Therefore, we can accept that the transverse
displacement of each layer at the edge of the crack is equal to zero.

And so, the edge of the plates inside the interface crack can be assumed clamped:

wi = 0, dwi/dr = 0 when r = b. (6.4.8)
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Also, the function dwi/dr should be equal to zero when r = 0. This requirement
and Eq. (6.4.8) complete the boundary value problem for Eq. (6.4.3).

Let us solve Eq. (6.4.3) in the following simplified designations:

k

(
d2 f

dr2
+ 1

r

d f

dr

)
+ N f = p, f = 	w = 1

r

d

dr

(
r
dw

dr

)
. (6.4.9)

The general solution of the first Eq. (6.4.9), limited at the coordinate origin, is:

f = p

N
+ C

1

N
J0

(
r

√
N

k

)
. (6.4.10)

Here C is an arbitrary constant, and J0(t) is the Bessel function of the first kind
of zero order which is the following entire function:

J0(t) =
∞∑
n=0

(−1)n

(n!)2
(
t

2

)2n

= 1 − 1

4
t2 + 1

64
t4 − 1

2304
t6 + . . . (6.4.11)

With the account of Eq. (6.4.10), the general solution of the second Eq. (6.4.9)
can be written as follows:

w = C0 + C1lnr +
b∫

r

dr

r

r∫
0

[
p

N
x + C

x

N
J0

(
x

√
N

k

)]
dx . (6.4.12)

Here, to satisfy the boundary conditions, we must put:

C0 = C1 = 0,

b∫
0

[
px + Cx J0

(
x
√
N/k

)]
dx = 0. (6.4.13)

The solution of Eq. (6.4.3) can be written now as follows:

w = pb2

4N

⎧⎪⎨
⎪⎩1 − r2

b2
− 2

⎡
⎣

λ∫
0

t J0(t)dt

⎤
⎦

−1 b∫
r

dr

r

λr/b∫
0

t J0(t)dt

⎫⎪⎬
⎪⎭ where λ = b

√
N

k
.

(6.4.14)

By adding a corresponding subscript 1 or 2 to w, N , and k in this expression, we
come to the solution of the original boundary value problem, Eqs. (6.4.3) and (6.4.8).

TheBessel functions of zero order can be expressed in terms of theBessel function
of the first order as follows:



6.4 A Crack Between Layers in Laminated Composites 141

x J0(x) = d

dx
[x J1(x)]. (6.4.15)

By the help of this equation, Eq. (6.4.14) is simplified:

w = pb2

4N

⎧⎪⎨
⎪⎩1 − r2

b2
− 2[λJ1(λ)]−1

λ∫
λr/b

J1(t)dt

⎫⎪⎬
⎪⎭. (6.4.16)

Let us use another property of the Bessel functions

J1(x) = − d

dx
J0(x). (6.4.17)

The sought solution acquires the final shape

w = pb2

4N

[
1 − r2

b2
− 2

J0(λr/b) − J0(λ)

λJ1(λ)

]
where λ = b

√
N

k
. (6.4.18)

Using Eqs. (6.4.15) and (6.4.18), we calculate the volume of the cavity from either
one side

V = 2π

b∫
0

rw(r)dr = πpb4

2N

[
3

4
− 2

λ2
+ J0(λ)

λJ1(λ)

]
. (6.4.19)

According to Eq. (6.4.8), we have f = d2w/dr2 when r = b, and since dw/dr
is equal to zero at the edge of the crack, the limiting condition in Eq. (6.4.1) can be
written as:

kb1 f
2
1 + kb2 f

2
2 = A where A = 2Γc − 1 − ν2

1

h1E1
N 2
1 − 1 − ν2

2

h2E2
N 2
2 when r = b.

(6.4.20)

From Eq. (6.4.18), when r = b, we can find

f = − p

2N

[
1 + λJ ′′

0 (λ)/J1(λ)
]

where λ = b

√
N

k
. (6.4.21)

Substituting the quantities f1, f2, N1 and N2 in Eq. (6.4.20) by Eqs. (6.4.5) and
(6.4.21) provides the function p = p(b, N ) in the general case:

p2
{
N−2
1 kb1

[
1 + λ1 J

′′
0 (λ1)/J1(λ1)

]2 + N−2
2 kb2

[
1 + λ2 J

′′
0 (λ2)/J1(λ2)

]2} = 4A.

(6.4.22)
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Using Eq. (6.4.22), the state equation for gas pV = MT RG and Eq. (6.4.19) for
the volume of the cavity, we can determine the crack growth b = b(M) in terms of
mass M of gas in the cavity. Generally, this solution depends on seven dimensionless
parameters.

In most important particular case when λ < 2, for the Bessel functions, we can
use the first approximation:

J0(λ) = 1 − 1

4
λ2, J ′′

0 (λ) = −1

2

(
1 − 3

8
λ2

)
, J1(λ) = 1

2
λ

(
1 − 1

8
λ2

)
.

(6.4.23)

Let us illustrate the solution results by a particular case when h1 = h2 = h, ν1 =
ν2 = ν, E1 = E2 = E, kb1 = kb2 = kb, and N1 = N2 = N . In this case,
λ1 = λ2 = λ. The values of V, f, p, M and λ = b

√
N/kb are determined by

Eqs. (6.4.19)–(6.4.21) and by the state equation for gas in the cavity. Solving this
equation system provides:

M∗ = πλ4

[
3

4
− 2

λ2
+ J0(λ)

λJ1(λ)

][
1 + λJ ′′

0 (λ)

J1(λ)

]−1

where M∗ = MT RG
N 2

kb
√
2kb A

.

(6.4.24)

This is the implicit function b = b(M) in the dimensionless variables. When
λ < 2, using Eqs. (6.4.23) and (6.4.24) provides the following simple result:

M∗ = 2πλ2

(
1 − 3

16
λ2

)
where λ2 = b2N/kb < 4. (6.4.25)

And so, when gas under a pressure leaks into a crack, the crack radius b increases
as follows:

b2 = kb
N

(
1 −

√
1 − 3

8π
M∗

)
when M∗ < 2π, Nb2 < 4kb. (6.4.26)

As distinct from Griffith’s crack, any even, however, small, original crack in a
structure will stably grow if a pressurized gas or steam goes into the crack.

6.5 Delamination of a Graphene Film from a Plate

The case when one of the plate layers is a momentless film cannot be obtained as
a limit from the preceding solution since, unlike the case of a plate, the angle β on
the delamination front of the film is nonzero. However, this problem is interesting
in the limiting case when the momentless film is inextensible, which is a good
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approximation to graphene films having a very great Young’smodulus. The thickness
of these films is of the order of one or several interatomic spacings of the diamond
crystal. Therefore, they can be considered momentless while their ultimate tensile
strength is about hundred times greater than for structural steel. Any force stretching
a plate with such a film will be entirely transferred into the film at a distance of two
to three plate thicknesses from the point of the force application.

When there is a cavity between a graphene film and a plate, the load from a force
N applied to a plate with such a film from all sides will be entirely transferred onto
the film in the cavity so that all stresses in the plate far from the point of the force
application will be equal to zero. The pressure p in the cavity can give rise to a
vertical deflection of an inextensible film only due to a horizontal displacement of
the film edge r = b, directed toward the center. The relative deflection w/b of the
film is of the order of pb/(2N ), and the horizontal displacement of the film edge
toward the center is equal to b(pb/N )2/8, that is, by an order of magnitude less than
the deflection. Such a small change in the boundary as well as its effect on the elastic
field of the plate can obviously be neglected.

Hence, when a plate covered on one side with an inextensible film is stretched
at infinity and a cavity under the film is formed by pumping gas in, the plate is
only subject to bending in the cavity (the plate extension is equal to zero). The film
deflection, when r < b, occurs under a constant tension which is the same as at
infinity. In this case, the bending moment at infinity is equal to zero in spite of the
structure asymmetry, the plate does not undergo bending or stretching outside the
cavity, and the horizontal displacement of the film edge on the delamination front
can be neglected. In the cavity, hence, Eq. (6.3.7) can be used for the deflection of
the plate and Eq. (6.3.1) can be used for the deflection of the film.

According to Eq. (6.4.1), in this case the limiting condition on the delamination
front has the following form

Γc = 1

2
N

(
dw1

dr

)2

+ 1

2
kb

(
d2w2

dr2

)2

when r = b. (6.5.1)

Here the first term on the right-hand side of Eq. (6.5.1) refers to the film, and the
second term to the plate.

The deflection of the film and plate is given by Eqs. (6.3.1) and (6.3.7), corre-
spondingly. Using these equations and Eq. (6.5.1), we can easily calculate the cavity
volume and find both the condition of the isothermal expansion of the gas in the cavity
and the limiting condition at its front. As a result, in terms of mass and temperature
of gas in the cavity, we get:

π

8
p2b4

(
1

N
+ b2

24kb

)
= MT RG; (6.5.2)

p2b2
(
1

N
+ b2

16kb

)
= 8Γc. (6.5.3)
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From here, we find the cavity radius and the pressure in terms of the mass of gas
in the cavity:

b2∗ = 1

2

(
3

2
M∗ − 1 +

√
1 + M∗ + 9

4
M2

∗

)
; (6.5.4)

p2∗ = b−2
∗

(
1 + 3

2
b2∗

)=1

. (6.5.5)

Here:

b2∗ = Nb2

24kb
, p2∗ = 3p2kb

N 2Γc
, M∗ = MT

N RG

24πkbΓc
. (6.5.6)

The cavity radius increases in a stable manner as the gas mass in the cavity
becomes greater, and the radius is directly proportional to

√
M∗ for small values of

M∗ and to
√
1.5M∗ for large values of M∗.

It is important to emphasize that the common analysis of fracturemechanics based
on loadings (here, pressure) would lead to a confusing result because, according to
Eq. (6.5.5), the pressure is less for a greater radius, which would mean the crack
instability. The point is that the pressure is produced by gas, which pressure depends
on the cavity itself. And so, the physical nature of loadings should be taken into
account in any analysis and prediction of fracture mechanics.

The above results on the development of cavities can be recalculated for other
physical processes such as, for example, the polytropic expansion/compression of
a gas or a process in which the mass and temperature of the gas supply vary in a
certain way. Then, the development of cavities will occur differently: There can be
halts in the growth, an alteration of stable and unstable development, and so on. In
chemical and biochemical systems, the load-transferring gas can be produced from
solid walls of cavities as a result of some reaction.

6.6 A Crack at the Interface Between Dissimilar
Half-Spaces

Let us consider an infinite elastic space consisting of two media with dissimilar
elastic properties when the interface between the media is a certain plane. The space
is compressed at infinity by a stress q, normal to the boundary plane. Gas or fluid
under a greater pressure p is pumped at a certain point of the boundary and an
axisymmetric crack of radius b arises and develops at the interface between the two
media under the action of this pressure. It is necessary to find the crack radius in
terms of the mass of gas or fluid pumped and in terms of physical properties of the
media. This problem is encountered in gas/oil industry using the method of fracking
for extraction of these minerals. Fracking is the hydraulic fracturing of a well by
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pumping a drilling mud into it with the aim of fracturing the rock and increasing the
output of a borehole (see next Chap. 7 of this book).

Using the linear superposition principle, we will now reduce this elastic problem
to that about a constant normal load p − q applied to the sides of the axisymmetric
crack, with the space at infinity being load-free. The energy flow density at the crack
front is determined by the invariant integral of Eq. (1.9.1) which in this case is equal
to [1]

Γ = Db(p − q)2/E1 where p > q; (6.6.1)

D = η0
(
1 + η2

0

)[
η2E2

1 + η1E2
2 + 2η1E1E2(1 + ν1)(1 + ν2)

]
E2(1 − 2ν2)[E1(1 + ν2) − E2(1 + ν1)]

. (6.6.2)

Here:

η0 = 1

2π
ln

E1(1 + ν2)(3 − 4ν2) + E2(1 + ν1)

E1(1 + ν2) + E2(1 + ν1)(3 − 4ν1)
, (6.6.3)

ηi = (1 + νi )
2(3 − 4νi ) where i = 1, 2, (6.6.4)

η3 = (1 − 2ν1)(1 − 2ν2) + 4(1 − ν1)(1 − ν2). (6.6.5)

In this case, the volume of the crack cavity is equal to [1]

V = 4πD

3E1
(p − q)b3 where p > q. (6.6.6)

The condition Γ = Γc is satisfied in the limiting state on the moving crack front.
In the case of a homogeneous space, the following relations are valid:

E = E1 = E2, ν = ν1 = ν2, D = (4/π)
(
1 − ν2

)
.

Further, we consider the cases of a gas or the drilling mud pumped into the crack
cavity:

(i) The drilling mud is an incompressible fluid

In this case, we can assume thatM = ρV where ρ is a constant density of the drilling
mud.

(ii) Gas obeys the state equation for the perfect gas

In this case, the state equation pV = MT RG is valid. This case is more relevant for
leaks in nuclear reactors.
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Incompressible Fluid In this case, Eqs. (6.6.1) and (6.6.6) provide the following
equation system:

Db(p − q)2 = ΓcE1, 4πρD(p − q)b3 = 3ME1. (6.6.7)

From this system, we find:

b =
(

9E1

16π2ρ2D

)1/5

M2/5, p − q =
(

ΓcE1

D

)1/2(16π2ρ2D

9E1

)1/5

M−2/5.

(6.6.8)

And so, the pumping of the drilling mud increases the crack radius directly pro-
portionally to M2/5, where M is the mud mass in the cavity.

Perfect Gas In this case, Eqs. (6.6.1) and (6.6.6) give us the following equations:

b(p − q)2 = ΓcE1

D
, pb3(p − q) = 3E1

4πD
MT RG . (6.6.9)

These equations can be reduced in a dimensionless shape as follows:

b = cE1

Dq2y2
, y = p

q
− 1 where y > 0; (6.6.10)

y5 − dy − d = 0. (6.6.11)

Here:

d = 4πΓ 3
c E

2
1

3q4B2MT RG
. (6.6.12)

Equation (6.6.11) has one real root y = y(d) which monotonically increases
as d increases so that when d → 0 then y → d1/5 and when d → ∞, then
y → d1/4. The following inequalities are valid: y(d) > d1/5 > d1/4 when d < 1,
and y(d) > d1/4 > d1/5 when d > 1.

These are some roots of Eq. (6.6.11):

d 0 1/48 1/2 32/3 1024/5
y 0 0.5 1 2 4

As the mass M of gas pumped into the crack cavity increases, the cavity radius
also increases. For small M , it is proportional to M1/2 and, for large values of M , it
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is proportional to M2/5. The gas pressure decreases as M increases. A small mass of
a high pressure is necessary to create an initial crack.

It should be noticed that, in all the problems considered, the crack begins to
develop from zero and increases in a stable manner as a greater mass of gas or fluid
is pumped into the cavity.

6.7 Development of a Casing String Gryphon

The growth of cylindrical cracks as gryphons outside a borehole casing string due
to the high pressure of gas, which is usually formed from a liquid gas condensate, is
characterized by an initial stable imperceptible growth which, under certain condi-
tions, changes to the extremely rapid unstable growth.

The uncontrolled growth of a gryphon can lead to an ecological catastrophe. For
example, in 2010 such a catastrophe occurred in the Gulf of Mexico as a result of
the breakthrough of gryphons at two boreholes.

Let us consider the development of a gryphon along a vertical string casing which
is a cylindrical tube of radius R, outside of which there is a homogeneous elastic
body (rock) saturated by a gas condensate. Let us assume that the rock and the tube
material are bonded along a common surface with the exception of a certain part
where there is a thin cavity (a gryphon) filled with gas that enters from the deposit
by seepage through the porous rock.

Let us make the following assumptions: (1) The problem is axisymmetric, (2) the
radial distance between the opposite sides of the gryphon, that is, its thickness, is
small as compared with the tube radius, (3) the gryphon length along the axis is large
compared with the tube radius, (4) the pressure gradient of the gas in the cavity of
the gryphon is small compared with the pressure gradient in the porous body, and
(5) the gryphon length along the axis is small compared with the characteristic size
of the porous body.

These assumptions justify the model of the active process zone of a gryphon as a
semi-infinite cylindrical cavity, the sides ofwhich are subjected to a constant pressure
p0. A gryphon can develop: (i) due to erosion, that is, the washing out and removal
of rock particles by the gas, or (ii) as a brittle crack due to the local fracturing of
the rock by gas pressure. These are completely different physical mechanisms. An
erosion gryphon develops downward driven by the gas seepage flowwhile a gryphon
crack develops in the direction of the gas flow, that is, upward.

Below we calculate the driving force of the slow erosion gryphon. In the next
section, the fast gryphon crack will be considered. In this and next section, we use
the cylindrical coordinates r z.

Erosion Gryphon Suppose a cylindrical gryphon located at r = R, z > 0 develops
in the direction of the gas flow, that is, upward in the unperturbed field. Here z is the
axis of symmetry, which is directed upward. A steady flow of a polytropic gas in a
porous medium can be described using the following invariant integral [1]
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Γi = k
∮
S

(−ϕ, jϕ, j ni + 2ϕ, j n jϕ,i
)
dS where i, j = 1, 2, 3. (6.7.1)

Here ϕ is the gas flow potential, k is the coefficient of permeability (seepage
intensity), S is the integration surface, and ni are the components of the unit outward
normal to this surface.

The gas velocity components vi are expressed in terms of the potential ϕ as
follows:

ρvi = qi = −ϕ,i , vi = −kp,i where i = 1, 2, 3; (6.7.2)

ϕ = k Apγ /γ, ρ = Apγ−1. (6.7.3)

Here p and ρ are the pressure and density of the gas, qi are the components of
the mass velocity vector of the gas, and A and γ are the constants of the polytropic
process of the gas expansion, respectively.

The integralsΓi over any closed surface S encompassing a volume, in which there
are no field singularities, are equal to zero which, in this case, manifest themselves
as the laws of conservation of mass and momentum. From Eq. (6.7.1), it follows that
Laplace’s equation ϕ,i i = 0 holds at all regular points of the field; it expresses the
same conservation laws locally.

In our problem about the gryphon, all the points of the field when r ≥ R will be
regular, with the exception of the singular gryphon front at r = R, z = 0, where the
flow velocity becomes infinite. The last fact is modeled by the following boundary
value conditions:

∂ϕ/∂r = 0 when r = R, z < 0; (6.7.4)

ϕ = ϕ0 when r = R, z > 0; ϕ0 = k Apγ

0 /γ. (6.7.5)

The first condition forbids the gas flow into the tube, while the second one
describes the local thin layer of liberated gas escaped from the rock into free cavity
on the wall.

The unperturbed flow far from the gryphon has the potential ϕ = −qz, where q
is the mass velocity of the unperturbed flow; and the flow perturbed by the gryphon
obviously has another potential at infinity:

ϕ = ϕ0R/r − qz when r > R, z → +∞; (6.7.6)

ϕ = −qz when r > R, z → −∞. (6.7.7)
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The potential of the perturbed flow when z → −∞ is obviously equal to zero.
The process zone under consideration is practically about two to three diameters of
the casing string/borehole; therefore, the pressure variation inside the cavity can be
ignored.

Let us consider the invariant integral Γz of this flow. As the closed surface of
integration, let us take the cylinder surface r = R plus the cylinder surface when
r → ∞ plus the cylinder end faces perpendicular to the axis when z → −∞ and
z → +∞, and plus the surface of a half of a torus formed by the rotation of a
circle, which radius is much less than R, around the singular front of the gryphon
r = R, z = 0. The integral over this closed surface is equal to zero. By the boundary
conditions and the conditions at infinity, the integrals over both cylindrical surfaces
are also equal to zero.

The integral over the toroidal surface is equal to 2πRΓ , where Γ is the density
of the gas flow momentum on the gryphon front, which is the driving force of the
erosion gryphon. According to Eqs. (6.7.6) and (6.7.7), the summary integral over
the upper and lower end faces, when z → +∞ and z → −∞, is equal to (π/2)kϕ2

0 .
As a result, the driving force of the erosion gryphon is equal to

Γ = kϕ2
0

4R
=
(
k3A2 p2γ0

)
/
(
4γ 2R

)
. (6.7.8)

As seen, the driving force of the erosion gryphon is directly proportional to the
third degree of the rock permeability and the gas pressure in the cavity to degree 2γ .

The development of an erosion gryphon can be characterized by some critical
values of the driving force describing the start of intense erosion, some acceleration
of the front movement, etc. It is noteworthy that unlike the usual dimension of force
per length for driving force of cracks and fractures, the driving force of the erosion
gryphon has dimension of momentum per length.

Proper Potential Field of Cylinder The problem of cylindrical potential has some
peculiarities which are worth of a discussion. Let us consider the following simplest
boundary value problem of the potential for r ≥ R, −∞ < z < +∞ which is an
infinite space having a cylindrical cavity:

	ϕ = 0 where 	 = 1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

∂z2
; (6.7.9)

∂ϕ

∂r
+ aϕ = 0 when r = R, a = const. (6.7.10)

ϕ → 0 when r → ∞. (6.7.11)

Let us find eigenfunctions of this homogeneous boundary value problem which
is a certain canonic problem. We apply the calculus of groups to solve it.
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Let the function ϕ(r, z) be the general solution of this problem. Then, the function
C1ϕ(r, z + C2) will, evidently, be the general solution, too (C1 and C2 are arbitrary
complex constants). Hence, the set of sought solutions makes a group, and the fol-
lowing functional equation is valid

ϕ(r, z) = C1ϕ(r, z + C2). (6.7.12)

Let us solve this equation. Suppose the solution is a certain differentiable function.
Substituting it in Eq. (6.7.12), we find thatC1 is a function ofC2, that isC1 = C1(C2).
Let us put it in Eq. (6.7.12), which becomes an identity. Let us differentiate this
identity over C2. As a result, we obtain

dC1

dC2
ϕ(r, z + C2) + C1(C2)

∂ϕ

∂(z + C2)
= 0. (6.7.13)

Let us designate

λ = R

C1(C2)

dC1

dC2
. (6.7.14)

Here λ is the proper number of this problem (generally, a complex one).
Equation (6.7.13) turns into the following equation

∂ϕ

∂(z + C2)
+ λ

R
ϕ(r, z + C2) = 0. (6.7.15)

The general solution of this equation has the form

ϕ(r, z) = F(r)e−λz/R . (6.7.16)

Here F(r) is an arbitrary function of r .
Using Eqs. (6.7.9) and (6.7.16), we find

d2F

dr2
+ 1

r

dF

dr
+
(

λ

R

)2

F = 0. (6.7.17)

From here, it follows that in Eq. (6.7.16), we can replace λ by −λ.
The general solution of Eq. (6.7.17) is:

F = B1 J0(λr/R) + B2Y0(λr/R). (6.7.18)

Here J0(λr/R) is theBessel function of zero order,Y0(λr/R) is theWeber function
of zero order, and B1 and B2 are some constants.

From the condition at infinity, Eq. (6.7.11), it follows that B2 = 0 because the
Weber function tends to infinity when r → ∞ (while the Bessel function tends to
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zero). Now, from Eqs. (6.7.10) and (6.7.18), we derive

λJ1(λ) = a∗ J0(λ), (6.7.19)

where

dJ0(λr/R)/dr = (λ/R)J1(λr/R), a∗ = aR. (6.7.20)

Here J1(λr/R) is the Bessel function of the first order.
Equation (6.7.19) is the characteristic equation, each root of which λ = λn gives a

particular solution, ϕn = J0(λnr/R)e−λn z/R called an eigenfunction of this problem.
It canbe shown that the characteristic equation,Eq. (6.7.19), has an infinite number

of roots; all roots are real and positive. Hence, the general solution of the canonic
problem stated by Eqs. (6.7.9)–(6.7.11) is given by the superposition of all particular
solutions

ϕ =
∞∑
n=0

cn J0(λnr/R)exp(−λnz/R). (6.7.21)

Here cn are arbitrary constants.
For our problem of a slow erosion gryphon, Eqs. (6.7.4)–(6.7.7), we obtain:
When z → −∞, a∗ = 0, λJ1(λ) = 0, (ϕ = −qz):

ϕ = −qz + c0 J0
(
λ0

r

R

)
exp
(
λ0

z

R

)
+ . . . (λ0

∼= 3.82); (6.7.22)

When z → +∞, a∗ → ∞, J0(λ) = 0,

(
ϕ = ϕ0

R

r
− qz

)
:

ϕ = ϕ0
R

r
− qz + c1 J0

(
λ1

r

R

)
exp
(
−λ1

z

R

)
+ . . . (λ1

∼= 2.4). (6.7.23)

As seen, the pressure in front of a gryphon varies much steeper than behind.
The values of c0, c1, c2 . . . can be obtained using the solution of the mixed

boundary value problem, Eqs. (6.7.4)–(6.7.7). Its exact solution can be found using
the Wiener–Hopf method, which is outside the subject of this book.

6.8 A Cylindrical Gryphon Crack

Suppose a semi-infinite cylindrical gryphon crack situated along r = R, z < 0 is
propagating upward under the action of a high gas pressure p = p0 in the gryphon
cavity located between the rock at r > R and the casing string (the tube) at r = R. As
distinct from the slow, downward-growing erosion cavity, it is a fast, fracturing crack.
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Let us assume that the rock is a homogeneous isotropic elastic body with a shear
modulus μr . The tube with a wall thickness t is assumed to be elastic with a Young’s
modulus E and Poisson’s ratio ν. Away from the tube, the rock is compressed by a
lateral rock pressure pb.

Using the linear superposition principle, let us study the axisymmetric problem
of the development of the semi-infinite cylindrical crack between the tube and the
rock under the action of a constant pressure p0 − pb in the crack cavity and zero
stresses at infinity. The boundary conditions of this problem have the form:

σr = −(p0 − pb), τr z = 0 when r = R, z < 0; (6.8.1)

ur = uz = 0 when r = R, z > 0; (6.8.2)

σr = τr z = 0 when r → ∞. (6.8.3)

Here σr , σθ and τr z are stresses, and ur , uθ and uz are displacements.
Let us use the following invariant integral of fracture mechanics in cylindrical

coordinates

Γz =
∫
S

(
Unz − Tr

∂ur
∂z

− Tz
∂uz

∂z

)
dS. (6.8.4)

Here:

Tr = σr nr + τr znz, Tz = σznz + τr znz . (6.8.5)

When z → −∞, the elastic field of the rock is well known. Based on Eq. (6.8.1),
it has the form:

ur = (p0 − pb)
R2

2μr r
, σr = −σθ = −(p0 − pb)

R2

r2
, (6.8.6)

uθ = uz = 0, σz = 0 when R < r < ∞. (6.8.7)

The latter equation σz = 0 is a remarkable property of this specific plane-strain
problem, due to the equality: σr + σθ = 0.

It should be noted that the process zone of this problem has an order of about two
diameters of the tube near the fracture front; therefore, within this range, both the
rock pressure and gas pressure can be assumed some constants (which depend on
the depth of the fracture front, as well).

As the integration surface S, let us consider the same closed surface as in the
case of an erosion gryphon, taking account of the opposite position of the gryphon
crack. The integral Γz over this closed surface is equal to zero. The integral over the
upper end face of the cylinder is equal to zero since, when z → +∞, the elastic
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stresses decrease exponentially. By virtue of Eq. (6.8.2), the integral over the surface
r = R, z > 0 is also equal to zero. According to Eq. (6.8.6), the integrand is of the
order of r−4 when r → ∞; hence, the integral over the infinitely distant cylindrical
surface is equal to zero.

The integral over the toroidal surface around the gryphon crack front is equal to
2πRΓ , where Γ is the driving force density at the gryphon crack front. It is the main
parameter characterizing the propagating and destructive abilities of the gryphon.

According to Eq. (6.8.6), the integral over the lower end face of the cylinder,
where nz = −1, nr = 0 when z → −∞, is equal to

∞∫
R

2π∫
0

U (r)rdrdθ = −(p0 − pb)
2 R2

2μb
. (6.8.8)

The integral over the crack surface r = R, z < 0, where nz = 0 and nr = −1,
has the following value

2πR

0∫
−∞

σr
∂ur
∂z

dz = −2πR(p0 − pb)δ. (6.8.9)

Here δ is the crack opening displacement at infinity when z → −∞. It is equal
to the displacement of the elastic medium (p0 − pb)R/(2μb) plus the displacement
of the elastic tube that is equal to

(
1 − ν2

)
(p0 − pb)R2/(t E). The latter equation

follows from the well-known equations of deformation of thin-walled elastic tubes
under pressure:

ur = Rεθ = 1 − ν2

E
Rσθ , uz = uθ = 0, σθ = 1

ν
σz = − (p0 − pb)R

t
. (6.8.10)

Finally, collecting all the terms, we obtain the following expression for the force
driving the gryphon crack

Γ = R(p0 − pb)
2

4μb

(
1 + 4

(
1 − ν2

)
μb R

t E

)
. (6.8.11)

If (R/t) � (E/μb), this equation can be simplified as follows:

Γ = (1 − ν2
)
(p0 − pb)

2R2(t E)−1. (6.8.12)

The limiting condition Γ = Γc is the criterion of the catastrophic gryphon crack
propagation because the driving force does not depend on the distance run by the
gryphon. In this case, the value of Γc characterizes the least of either the specific
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work spent for fracturing the contact of rock and casing string, i.e., the adhesion
energy, or the effective surface energy of the rock.

The speed of the gryphon propagation is determined by the process of gas transport
in the cavity of the gryphon. However, it cannot exceed the speed of gas discharge
into vacuum, which is about an order less than the velocity of the Rayleigh surface
wave in the rock.

The knowledge of the crack driving force Γ helps one characterize also the slow
subcritical crack growth because this force controls any crack development.
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Chapter 7
Theory of Fracking

Abstract The mathematical problems of hydraulic fracturing (fracking) for the oil-
and-gas extraction have been just recently solved by the author using invariant inte-
gral, complex variables, boundary layers, and his method of functional equations
(published in the Royal Proceedings). In the chapter, the shape of the destructed
rock volume and the gas/fluid output of the borehole are determined in terms of
the geometrical, physical, and instrumental parameters of fracking process for hori-
zontal drilling using thick muds and proppants. Three basic regimes of fracking are
studied, including the permeation, non-permeation, and mixed regimes. Also, some
new related problems of gas/fluid flow in porous media and of heat flow in cracked
materials are effectively solved. This chapter is a “must-to-learn” for those who are
engaged in the fracking technology or business.

Hydraulic fracturing called shortly fracking is an extraction method of oil and gas
using horizontal drilling and special thick muds with proppants that keep fractures
open. This method made a revolution in oil/gas industry of the twenty-first century
by solving the problem of energy supply of the man for the next two hundred years.
Invented still in the 1940th it has only recently become cost-effective after many
improvements.

Our task is to derive the physical laws and equations governing the fluid flow in
the porous rock being fractured by the fluid itself. The theory treated below is based
on this author’s paper published in Philosophical Transactions of the Royal Society,
A373, 2014, 0119.

7.1 Temperature Track Behind a Moving Crack
or Dislocation

To understand any fracturing behavior, we need, first, to look into the crack-tip where
it happens. Temperature and heat flow stay behind all non-equilibrium processes
including fracturing. What happens if all irreversible work of fracturing turns into
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heat at the crack-tip? It is a fundamental and simplest question; besides, the heat flow
in solids is very similar to the fluid flow in porous materials.

Therefore, let us study, first, the local stationary temperature field near the front
of an arbitrary crack or dislocation in a solid. In this case, the field does not depend
on x3 so that a crack or dislocation in the moving coordinate frame Ox1x2 is at
x2 = 0, x1 < 0. This front moves along the x1-axis with respect to the elastic solid.

The crack driving Γ force Γ1, see Eq. (1.5.1) in Chap. 1, can be calculated from
the local elastic field of stresses σi j (x1, x2) and displacements u j (x1, x2) near the
crack front using the following equation [1]:

Γ1 = π

2
lim

[
σ2 j (+ε, 0)u j (−ε, 0)

]
where ε → 0, j = 1, 2, 3. (7.1.1)

This equation is valid for dynamic and static cracks in arbitrary anisotropic linearly
elastic materials and for interface cracks. Besides, it is valid for nonlinear power-
law hardening incompressible materials, with replacing coefficient π/2 by another
coefficient dependent of power [1]. For dislocations, equation Γ1 = σ 0

1 j B j is valid,
where Bj is the displacement discontinuity and σ 0

1 j are the stresses at the front
location without the dislocation.

Let us assume that this specific energy Γ1 of the Γ force driving a moving crack
or dislocation turns into heat because the losses of energy for acoustic and electro-
magnetic radiation, for latent residual stresses and for surface energy, are negligibly
small. The work spent on local plastic deformations turns into heat. Hence, the mov-
ing front of a crack or dislocation is mainly a heat source. Griffith’s theory about
surface energy is certainly a historic anachronism.

And so, we come to the problem of a linear source of heat Γ1 at the crack-tip
moving at constant speed v1 = v along the x1-axis. Let us assume that a steady-state
temperature field is set up in the crack-tip neighborhood. In this case, we can use the
following invariant integral of the temperature field taken on a closed contour over
the crack-tip [1, 2]

Γ1 =
∮ (

ρmcHTn1 + kT
v2

T,i niv1

)
dS, i = 1, 2, 3. (7.1.2)

Here T (x1, x2) is the temperature increase owing to the heat source at the begin-
ning of coordinates which is point O , Γ1 is the value of the force driving the crack
or dislocation which is equal to the specific work spent by the stresses to move this
crack or dislocation, ρm, cH and kT are the mass density, specific heat and thermal
conductivity of the matter. As a matter of fact, Eq. (7.1.2) represents the energy
conservation law.

If no heat sources are inside the integration surface, then Γ1 = 0, so that apply-
ing the divergence theorem to Eq. (7.1.2) provides the following partial differential
equation which is valid at all regular points of the stationary temperature field

kT
(
T,11 + T,22

) = −ρmcHvT,1. (7.1.3)
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A similar equation emerged in the problem of convective heat/mass transfer in
a fluid flow past a cylinder of an arbitrary cross section for low Prandtl and any
Peclet numbers [3]. Using the result of this work, we can write the easily verifiable
solution of Eq. (7.1.3), which is singular at point O , vanishes at infinity, and is an
even function of x2

T = Aλ−2eλx1K0(λr) where r =
√
x21 + x22 , λ = vρmcH

2kT
. (7.1.4)

Here A is a constant to be found, and K0(λr) is the modified Bessel function
which has the following asymptotes

K0(λr) → − ln
λr

2
when λr → 0 and K0(λr) →

√
π

2λr
e−λr when λr → ∞.

(7.1.5)

Let us substitute function T (x1, x2) in Eq. (7.1.2) by its asymptotic value for small
λr ; see Eqs. (7.1.4) and (7.1.5). By taking a circle of infinitely small radius as the
integration contour in Eq. (7.1.2) and by calculating the integral, we get

A = vλ2

2πkT
Γ1. (7.1.6)

And so, the local temperature field produced by a moving crack or dislocation is

T = vΓ1

2πkT
eλx1K0(λr) where r2 = x21 + x22 , λ = ρmvcH

2kT
. (7.1.7)

The temperature has a logarithmic singularity (a heat source) at the moving front
of a crack or dislocation, with intensity being directly proportional to the square of
fracture toughness in the case of open-mode cracks.

In light of this new approach, Griffith’s view on the fracturing as a reversible
exchange of elastic and surface energies seems very poor and delusive. The irre-
versible exchange of elastic and heat energies is a much more reasonable theory.
This implies also that the crack can grow owing to other energy-consuming mecha-
nisms, for example, by the vaporization or fluidization of an infinitely small amount
of the material at the crack-tip.

7.2 Drainage Crack Growth in Porous Materials Filled
with a Fluid

Let us study the small neighborhood of the end of a crack in a porous body filled
with a fluid. Let us show, first, that this problem can be reduced to a mathematical
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problemwhich is very similar to the problem of the previous section. The fluid flow in
a horizontal layer, which can be an oil/gas bearing bed, is governed by the following
equations:

∂p

∂t
= a∗

(
∂2 p

∂x2
+ ∂2 p

∂y2

)
, vx = − k

ρg

∂p

∂x
, vy = − k

ρg

∂p

∂y
where a∗ = k

βρg
.

(7.2.1)

Here t is time, p(x, y, t) is the fluid pressure, �v(
vx , vy

)
is the fluid/gas flow rate

(real velocity equals �v/εp), k is the filtration coefficient, ρg is the specific weight of
fluid, εp is the rock effective porosity, and β is the compressibility coefficient of the
saturated rock. It is assumed that p/ρg is much greater than the bed thickness.

Other constants commonly used are:

kp = kη f

ρg
, η f = νρ. (7.2.2)

Here kp is the permeability of the porous rock, and ν and η f are the kinematic and
dynamic viscosities of gas/fluid. There are some empirical relations, for example,
the Kozeny equation

kp = CK
d2

(
1 − εp

)2 ε3p. (7.2.3)

Here d is the effective size of rock grains, and CK is a constant.
Suppose a vertical crack cuts through the horizontal oil bed at x2 = 0, x1 < 0 so

that its front moves along the x-axis where

x1 = x − vt, x2 = y. (7.2.4)

Here v is the constant velocity of the crack front.
Let us study the local steady-state fluid flow near the crack front. Equation (7.2.1)

in the new variables x1 and x2 turns to the following one:

a∗
(
p,11 + p,22

) = −vp,1. (7.2.5)

This equation can also be derived using the following invariant integral of the
stationary fluid flow in a porous medium

Γ1 =
∮ (

pn1 + a∗
v
p,i ni

)
dS where i = 1, 2. (7.2.6)

Here p(x1, x2) is the local pressure depression caused by the moving sink at the
crack front, and Γ1 is the drainage force driving the local depression field in the solid
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bed when the integration contour in the plane Ox1x2 embraces the crack front at
x1 = x2 = 0.

It is easy to verify that the solution of Eq. (7.2.5), which is singular at x1 = x2 = 0
and which vanishes at infinity, has the following form

p = B

(
2a∗
v

)2

K0

(
vr

2a∗

)
exp

vx1
2a∗

where r2 = x21 + x22 . (7.2.7)

Here B is a constant to be found, and K0

(
vr

2a∗

)
is the modified Bessel function

of zero order.
Let us substitute function p(x1, x2) in Eq. (7.2.6) by its asymptotic value for

small r ; see Eqs. (7.1.5) and (7.2.7). Using a circle of infinitely small radius as the
integration contour in Eq. (7.2.6) and by calculating the integral, we find

B = 1

8π

(
v

a∗

)3

Γ1. (7.2.8)

And so, the pressure field of a local depression near the front of a moving crack
in a bed is given by the following equation:

p = v

πa∗
Γ1K0

(
vr

2a∗

)
exp

vx1
2a∗

. (7.2.9)

The drop of the local fluid pressure near the moving front of a crack in a bed has
a logarithmic singularity of a sink which intensity is directly proportional to vΓ1/a∗.

It should be noticed that the total force for the fracturing of a solid skeleton
saturated by a fluid is equal to the drainage driving force plus the crack driving force
if all other forces are negligibly small. From this equation, it follows that the greater
is the drainage driving force Γ1, the less is the crack driving force fracturing the
skeleton. And so, in the limit the drainage driving force, Γ1 can fracture the rock
skeleton by itself.

7.3 Fluid/Gas Flow in Porous Materials: Binary Continuum

Let us model a stationary process of the flow of a viscous fluid or gas in a porous
material by a binary continuum so that two different continua are assumed to be at
each point of space. One of these continua is an elastic solid characterized by the
following invariant integrals [1]:

Γk =
∮ (

Unk − σi j n j ui,k
)
dS, (7.3.1)
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∮ (
σi j n j + εp pni

)
dS = 0. (7.3.2)

Here U is the elastic potential, ui and σi j are the displacements and stresses, and
εp pni are the components of the volume force acted by the other continuum upon
this one.

The other continuum is a fluid or gas flow characterized by the following invariant
integrals [1]:

Γk =
∮ (

fki ni − ρ f vi nivk
)
dS, (7.3.3)

∮
ρ f vi nidS = 0, (7.3.4)

∮ (
fki ni − εp pnk

)
dS = 0, (7.3.5)

and by the following state equations for fluid or gas:

fi j = −pδi j + η f
(
vi, j + v j,i

)
for fluid; pρχ

f = Cp for gas. (7.3.6)

Here εp is the effective porosity,η f is the dynamic fluid viscosity, vi is the fluid/gas
flow rate (the real velocity equals vi/εp), ρ f , p, and fi j are the density, pressure, and
stresses in the fluid/gas continuum, and χ and Cp are constants characterizing the
polytropic process for gas.

In Eqs. (7.3.1) and (7.3.3), the value of Γk is the same due to the interconnection
of the both continua. The value εp pni of the volume force follows from the tubular
model of porous materials. The effective porosity accounts only for the volume of
interconnected poreswhere the fluid flows. At regular points, the equations of the the-
ory of elasticity and fluid or gas dynamics can be obtained from Eqs. (7.3.1)–(7.3.6)
by means of the divergence theorem.

Below we study some problems arising from the horizontal drilling of porous
rocks, especially the theory of fracking which concerns the fracturing of the bed by
a drill mud.

7.4 Horizontal Borehole: Stationary Extraction Regime

Let us study, at first, the fluid flow in horizontal boreholes. Let the x3-axis coincides
with the axis of a vertical borehole so that plane x1x2 is parallel to the day surface.
Suppose there is also a horizontal cylindrical borehole with axis x1 = x issuing
from the vertical borehole. Let us use the cylindrical coordinate frame Oxr , where
r2 = x22 + x23 , and point O is the issue of the horizontal borehole. We assume that a
horizontal borehole of radius r0 is embedded inside a horizontal fluid deposit which
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size is much greater than length lH of this borehole and which thickness is much
greater than radius r0.

The porous rock is subject to stress σ33 = −wr which is equal to the weight of
higher-placed rocks per unit square and to stresses σ11 = σ22 = −δTwr where the
lateral thrust coefficient δT is equal to δ/(1 − δ) in terms of Poisson’s ratio, in the
plane-strain model of the rock structure. Since 1 ≥ δT ≥ 0, the fracking wins the
best advantage from the horizontal drilling because fractures in the rocks tend to
grow along vertical planes which are perpendicular to the day surface.

Let us find the fluid flow field of a horizontal borehole ignoring elasticity of the
porous medium. Luckily, in this 3D problem, there are two small dimensionless
parameters λ1 and λ2

λ1 = r0
lH

, λ2 = kp
r20

. (λ1 � 1, λ2 � 1) (7.4.1)

Here kp is the permeability of the porous medium. Parameter λ2 is vey small so
that the fluid transport inside a borehole is much faster than through the porous rock.

These small parameters signal that there is a boundary layer in the domain 0 <

x < lH , r0 < r < r∗, where r∗ − r0 is the thickness of the boundary layer. Let us use
the invariant integral of mass conservation, Eq. (7.3.4). By applying the divergence
theorem, we derive equation vi,i = 0. Using the empirical Darcy law for oil flow, we
substitute vi = (

kp/η f
)
p′i and derive Laplace’s equation for pressure p, which has

the following form in the cylindrical coordinate frame Oxr

∂2 p

∂r2
+ 1

r

∂p

∂r
+ ∂2 p

∂x2
= 0. (7.4.2)

Under the conditions of Eq. (7.4.1), we have p,xx � p,rr in the narrow boundary
layer of the most active flow process so that the solution of Eq. (7.4.2) in this layer
can be written as follows:

p = PB(x) + p∞ − PB(x)

ln
r∗
r0

ln
r

r0
; (7.4.3)

vr = − kp
η f

∂p

∂r
, vx = − kp

η f

∂p

∂x
. (7.4.4)

Here vr and vx are the fluid flow rates, p∞ is the initial pressure in the deposit
and on the border r = r∗ of the boundary layer, and PB(x) is the pressure in the
horizontal borehole.

From here, we arrive at the following system of ordinary differential equations:

dVB

dx
= 2πr0qB, VB(x) = πr40

8η f

dPB

dx
, qB(x) = kp

η f
· p∞ − PB(x)

r0 ln
r∗
r0

. (7.4.5)
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Here VB(x) is the fluid flow rate through the borehole cross section, and qB(x)
is the inflow rate of fluid into the borehole. The second equation follows from the
famous Poiseuille equation.

The solution of Eq. (7.4.5) can be written in the following form:

PB = p∞ − p∞ − pb
sh(lH/ l)

sh
lH − x

l
, qB = kp

r0η f
· p∞ − pb
ln(r∗/r0)

· 1

sh(lH/ l)
sh
lH − x

l
(7.4.6)

VB = πr40
8lη f

· p∞ − pb
sh(lH/ l)

ch
lH − x

l
where l = 1

4
r20

√
1

kp
ln

r∗
r0

. (7.4.7)

Here pb is the pressure at the issue of the borehole, where x = 0.
And so, the fluid output of the horizontal borehole without fractures per unit time

is equal to VB at x = 0, that is, to

Qb = π

2

r20
η f

√
kp

(
ln

r∗
r0

)−1/2

(p∞ − pb)cth
lH
l

. (7.4.8)

To find r∗/r0, it is convenient to use equality r∗/r0 = (lH/r0)
α , where α is a

fitting constant that can be found from one numerical solution of the problem [1]. It
is equal to about 0.7.

7.5 Penny-Shaped Fracture: Stationary Extraction Regime

Let a penny-shaped fracture of radius R0 be issuing from the horizontal borehole at
x = x0 so that its center is on the x-axis and its plane is perpendicular to this axis.
We move the frame Oxr along the x-axis to the center of the fracture and designate
it as Oξr , where ξ = x − x0.

The distance between opposite banks of the fracture at r0 < r < R where
R < R0 can be taken constant equal to dp, where dp is the diameter of hard particles
(proppants) in the drill mud used to make the fracture by fracking. The particles
remain inside the open fracture after the mud is removed when the rock pressure is
closing the opening. These particles keep the fracture open like a wedge does.

The value of R is determined by the fracking process while the difference R0 − R
can be found from the corresponding plane-strain problem of fracture mechanics
when R0 − R � R. We provide the result of the solution concerning this problem
of wedging [1]

Edp

2
(
1 − δ2

)√
2π(R0 − R)

− δTwr

√
1

2
π(R0 − R) = KIC . (7.5.1)
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Here KIC is the rock fracture toughness.
From Eq. (7.5.1), it follows that R0 − R is less than Edp

[
2πδTwr

(
1 − δ2

)]−1
,

that is, less than about 0.1 m for sandstones at the depth 1 km and dp ≈ 0.5 cm.
Thus, R0 − R � R indeed.

In what follows we also assume that R � r∗; otherwise, the fracking has no
advantage.

The fluid flow near the fracture has the structure of a boundary layer along |ξ | <

x∗, r0 < r < R, where λ3 = x∗/R � 1 and d2
p � kp so that VF � dpvr . Here VF

is the flow rate through the fracture cross section per unit length.
In the boundary layer, the approach of Sect. 7.4 provides the following basic

equations

d

dr
(rVF ) = rqF , VF = − d3

p

12η f
· dPF

dr
, qF = 2

kp
η f

· p∞ − PF (r)

x∗
. (7.5.2)

Here PF (r) and qF (r) are the pressure in, and inflow rate into, the fracture.
From Eq. (7.5.2), it follows that

1

r

d

dr

(
r
dPF

dr

)
= − 1

b2
[p∞ − PF (r)]

(

where b = dp

2

√
x∗dp

6kp

)

(PF = p∞ when r = R, and PF = pb when r = r0) (7.5.3)

Here pb is the pressure at the issue of the fracture on the horizontal borehole.
The solution of the boundary value problem of Eq. (7.5.3) can be written as

follows:

PF = p∞ − D(p∞ − pb)

[
I0

(
R

b

)
K0

( r
b

)
− K0

(
R

b

)
I0

( r
b

)]
, (7.5.4)

where D =
[
K0

(r0
b

)
I0

(
R

b

)
− K0

(
R

b

)
I0

(r0
b

)]−1

.

Here I0(r/b) is the modified Bessel function of zero order so that:

I0
( r
b

)
→ exp

r

b

(
2π

r

b

)−1/2
when

r

b
→ ∞; I0

( r
b

)
→ 1 when

r

b
→ 0.

(7.5.5)

According to Eqs. (7.5.2) and (7.5.4), the fluid output from the fracture into the
horizontal borehole per unit time is equal to

QF = πr0d3
p

6bη f
D(p∞ − pb)

[
I0

(
R

b

)
K1

(r0
b

)
+ K0

(
R

b

)
I1

(r0
b

)]
. (7.5.6)

Here K1(r0/b) and I1(r0/b) are the corresponding modified Bessel functions of
the first order.
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For very large fractures when R � b � r0, Eq. (7.5.6) is reduced to the simpler
equation

QF = πd3
p(p∞ − pb)

6η f ln(b/r0)
. (7.5.7)

And so, the output of a very large fracture significantly depends on dp, p∞ −
pb, and η f , and much less on the fitting parameter b/r0. The value of the latter
parameter has to be found from one numerical solution of the problem under some
typical conditions, or from a modeling experiment.

Evidently, this extraction process can be productive only for large fractures in
rocks of high permeability. In the case of several fractures, when the distance between
any two neighboring fractures is greater than x∗, the total output is given by summa-
tion of Eqs. (7.4.8) and (7.5.7). For a closer distance, more study is required.

7.6 Hydraulic Fracturing (Fracking)

Let us consider the hydraulic fracturing process used in oil/gas industry for the
drilling of boreholes, especially, in shale gas reservoirs. Shales are characterized
by high porosity, low permeability, and low fracture toughness. They are fractured
by minor tensile stresses so that the shale destruction opens the way to extract gas
stored in closed pores. Because of low permeability, the fluid flow in rock beyond
the fractured zone can be ignored.

Horizontal boreholes in shales can be as long as 2 km. High pressure of the
drill mud upon the rock surface and chemicals dissolving links between the rock
fragments at the front of fractures produce a well-fractured volume in the local
neighborhood of horizontal boreholes. Practically, all gas can be extracted from this
volume. And so, the capacity of the borehole depends on the volume of fractured
rock. The fractures keep open using proppants embedded by the drill mud inside
fractures during fracking.

When the drill mud pressure is low, the horizontal cylindrical channel in an elastic
bed of rock is subject to the following stresses in the surface layer of the channel

σr = −pm, σθ = pm − wr [1 + δT + 2(1 − δT ) cos 2θ ] (7.6.1)

Here pm is the drill mud pressure; wr and δT are the weight of higher-situated
rock per unit area and the lateral thrust coefficient; and θ is the angle between the
horizontal plane and radius in the polar system of coordinates Orθ in the cylinder
cross section with the center at the axis.

The stresses far from this channel are equal to

σ11 = σ22 = −δTwr , σ33 = −wr . (7.6.2)
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The fracturing starts at the top point θ = π/2 when pm ≥ (3δT − 1)wr .
Belowwe study three basic regimes of fracking. In the permeation regime, the drill

mud penetrates everywhere inside fractures, while in the non-permeation regime, it
penetrates nowhere in the rock. The most practical regime is that of partial perme-
ation. The zone of fractured rock is assumed to enclose the horizontal borehole.

We assume that many fractures issue from the borehole, all being radial, that is,
propagating along planes θ = const. The border of the domain of fractured rock in
the cylinder cross section represents an oval more extended in the vertical direction.
The exact shape of the fractured domain is found using the method of functional
equations and the theory of functions of a complex variable.

Thismethodwas elaborated by this author in 1963 in the paperAmethod of solving
elastic-plastic problems, J. Appl. Math. Mech. (JAMM), vol. 27, see [4]. Based on
the principle of analytic continuation, a boundary value problem is replaced by a
functional equation which is valid in the whole plane of a complex variable. Used by
many authors later, this method brought exact solutions of some nonlinear problems
in the theory of plasticity, cavitation, and local buckling.

7.7 The Permeation Regime of Fracking

The friable shale is fractured by minor tensile stresses caused by the pressure of the
drill mud that permeates multiple fractures. As a result, the hydrostatic pressure pm
is setting in everywhere in the well-fractured rock so that

σ11 = σ22 = σ33 = −pm (inside ZF ) (7.7.1)

Here ZF is the closed contour of the boundary of fractured rock in the normal
cross section Ox2x3 of the horizontal borehole. This stress state is similar to a specific
fluidized state [5]. The rock outside ZF is intact and elastic, and is in a prefractured
state on ZF so that

σn = −pm, σt = −σs if σt ≤ 0, σnt = 0 on ZF . (7.7.2)

Here σn , σnt , and σt are the normal, shear, and tangential stresses on ZF satisfying
a failure criterion, for example, the von Mises criterion where ks is a constant

(σn − σt )
2 + (σn + δTwr )

2 + (σt + δTwr )
2 + 6σ 2

nt = 3k2s . (7.7.3)

In the extreme case, we get σt = 0 on ZF due to the effect of special chemicals
so that we can neglect the tensile strength of the rock.

It is required to find contour ZF and stresses outside ZF meeting these boundary
conditions. This is an inverse problem of the theory of elasticity. Let us solve it. We
apply the invariant integral of Eq. (1.6.1) to an arbitrary elastic domain outside ZF

and use the divergence theorem; as a result, we have
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σi j, j = 0, σi j = ∂U

∂εi j
, εi j = 1

2

(
ui, j + u j,i

)
. (7.7.4)

This is the equation system of the theory of elasticity.
In the plane-strain case of a linearly elastic homogenous isotropic rock, the fol-

lowing representation is valid for stresses σ22, σ33, and σ23 outside contour ZF [1]

σ22 + σ33 = 4ReΦ(z), (z = x2 + i x3) (7.7.5)

σ33 − σ22 + 2iσ23 = 2
[
z̄Φ ′(z) + Ψ (z)

]
. (7.7.6)

Here theKolosov–Muskhelishvili potentialsΦ(z) andΨ (z) are analytic functions
outside contour ZF that is unknown beforehand and has to be found.

FromEqs. (7.6.2), (7.7.2), and (7.7.5), it follows that based on Liouville’s theorem

4Φ(z) = −(1 + δT )wr = −pm − σs . (7.7.7)

Hence, the pressure of the drill mud necessary for this regime of fracking is

pm = (1 + δT )wr − σs . (7.7.8)

Using Eqs. (7.7.2), (7.7.6), and (7.7.7), and the following equation

σt − σn + 2iσtn = e2iα(σ33 − σ22 + 2iσ23), (7.7.9)

we can formulate our boundary value problem as follows:

2e2iαΨ (z) = pm − σs (x2 + i x3 = z ∈ ZF ). (7.7.10)

Here α is the angle between the external normal to ZF and axis x2 being counted
from the axis to the normal.

Let the conformal mapping of domain |ζ | ≥ 1 onto the domain outside contour
ZF be provided by function z = ω(ζ ), where ζ is a new parametric complex variable.
Since ω′(ζ )e2iα = −ζ 2ω′(ζ ) on |ζ | = 1, the boundary condition (7.7.10) can be
written as

(pm − σs)ω′(ζ ) + 2ζ 2ω′(ζ )Ψ (ω(ζ )) = 0 (ζ = 1). (7.7.11)

Using the method of functional equations and the principle of analytic continua-
tion, the boundary value problemofEq. (7.7.11) is reduced to the following functional
equation which is valid in the whole plane of the complex variable ζ

(pm − σs)ω′
(
1

ζ

)
+ 2ζ 2ω′(ζ )Ψ (ω(ζ )) = 0. (7.7.12)
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For more detail and for many other nonlinear problems solved by this method, we
can refer to the book [6]. As can be directly verified, the solution to the functional
equation of Eq. (7.7.12) can be written in the following shape:

ω(ζ ) = A

(
ζ − κ

ζ

)
, Ψ (ω(ζ )) = −1

2
(pm − σs)

1 + κζ 2

κ + ζ 2
. (7.7.13)

Here A is an arbitrary constant, and κ is equal to

κ = 1 − δT

1 + δT
. (0 < κ < 1, 0 < δT < 1) (7.7.14)

And so the boundary of the fractured rock has a shape of ellipse which diameters
in the vertical and horizontal directions are:

DV = 2A(1 + κ), DH = 2A(1 − κ). (7.7.15)

The output of shale gas in this regime is directly proportional to π
(
1 − κ2

)
A2lB .

For A � r0, the value of A is directly proportional to the square root of the volume
of the drill mud pumped into the horizontal borehole. In this regime of fracking, the
shale gas output is directly proportional to the drill mud volume pumped into the
borehole.

7.8 The Non-permeation Regime of Fracking

Let us study the other extreme case when the permeation of the drill mud into the
fractured rock can be ignored. In the continuum approximation, for many radial
fractures inside contour ZF , we get

σr = −pm
r0
r

, σθ = 0, σrθ = 0. (r ≥ r0 and inside ZF ) (7.8.1)

At infinity, the stresses determined by Eq. (7.6.2) are valid.
Similarly to the previous problem of Sect. 7.7, we use the conformal mapping

of domain |ζ | ≥ 1 onto the domain outside ZF by function z = ω(ζ ) and from
Eq. (7.8.1) arrive at the following boundary value problem when |ζ | = 1:

4ReΦ(ω(ζ )) = − r0 pm
|ω(ζ )| , (7.8.2)

ω(ζ )

ω′(ζ )

d

dζ
Φ(ω(ζ )) + Ψ (ω(ζ )) = r0 pmω(ζ )

2ω(ζ )|ω(ζ )| . (7.8.3)
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Using the principle of analytic continuation, let us continueEqs. (7.8.2) and (7.8.3)
onto the whole plane of the complex variable ζ

Φ(ω(ζ )) + Φ̄

(
ω

(
1

ζ

))
= −1

2
r0 pm

(
ω(ζ )ω̄

(
1

ζ

))−1/2

, (7.8.4)

ω̄

(
1

ζ

)(
ω′(ζ )

)−1 d

dζ
Φ(ω(ζ )) + Ψ (ω(ζ )) = 1

2
r0 pm(ω(ζ ))−3/2

(
ω̄

(
1

ζ

))1/2

(7.8.5)

These functional equations are valid everywhere in the ζ -plane. Their exact solu-
tion can be written as follows [4, 7]:

ω(ζ ) = B
(
2ζ 2 − λ

)2
ζ−3, Φ(ω(ζ )) = wr (1 + δT )

[
1

4
− ζ 2

2ζ 2 − λ

]
(7.8.6)

Ψ (ω(ζ )) = −1

2
λwr (1 + δT )

ζ 4
(
1 + ζ 2

)[
2
(
4 + λ2

)
ζ 2 + λ

(
4 − 3λ2

)]

(
2ζ 2 − λ

)3(
2ζ 2 + 3λ

) . (7.8.7)

Here:

B = r0 pm
(1 + δT )

(
4 − λ2

)
wr

, λ3 + 4λ = 8κ, κ = 1 − δT

1 + δT
. (7.8.8)

Notice of erratum: The denominator of the second Eq. (5.2.23) in book [6] should
be equal to σ∞

x + σ∞
y − 2σs instead of σs − p. In Sects. 7.7 and 7.8 of the present

text, it is assumed that σs = 0.
According to Eq. (7.8.6) for ω(ζ ), the oval contour ZF is described by the fol-

lowing parametric equations

x2 = B
[
4(1 − λ) cosβ + λ2 cos 3β

]
, (2π ≥ β ≥ 0)

x3 = B
[
4(1 + λ) sin β − λ2 sin 3β

]
. (7.8.9)

The vertical and horizontal diameters of the fractured domain are as follows:

DV = 2B(2 + λ)2, DH = 2B(2 − λ)2. (7.8.10)

Contour ZF encloses the horizontal borehole when

pm
wr

≥ (1 + δT )
2 − λ

2 + λ
. (7.8.11)

It can be shown that the solution given by Eq. (7.8.9) satisfies the condition of
Eq. (7.8.11) when
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2

3
≥ λ ≥ 0 i.e when

17

37
≤ δT ≤ 1. (7.8.12)

when λ = 2/3, cusps appear at points x3 = ±1

2
DV of contour ZF . At this state, the

vertical diameter of the cross section of the fractured domain is four times greater
than the horizontal diameter, i.e., DV = 4DH . This means that for λ > 2/3, some
fractures grow in the intact rock issuing from the cusps, along the vertical plane x1x3,
because of the square-root singularity of tensile elastic stresses at the cusps.

According to Eq. (7.8.9), the area of the cross section of the fractured zone is
equal to

πB2
(
16 − 16λ2 − 3λ4

) − πr20 .

And so, in the non-permeation regime under study, the parameters δt and pm/wr

are the main parameters of the fracking process. When pm � wr , the volume of
fractured rock in this regime is equal approximately to lHr20 (pm/wr )

2.

7.9 The General Regime of Fracking

The general regime of partial permeation occurs when the drill mud penetrates into
some part of fractures at r0 ≤ r ≤ r∗ while gas liberated from fractured pores of
the rock permeates all the remaining part of fractures. This regime is of the most
practical importance. The stresses in the rock between any two neighboring radial
fractures meet the following equation

∂σr

∂r
+ σr − σθ

r
= 0, σrθ = 0 (θ0 ≤ θ ≤ θ0 + �θ) (7.9.1)

Since �θ � 1, we can put σθ = −pm in the area where the drill mud wets the
fracture surface, i.e., when r0 ≤ r ≤ r∗. This is an axisymmetric area because it is
determined by the axisymmetric conditions in the neighborhood of the horizontal
borehole. In the remaining part inside ZF when r ≥ r∗, we can put σθ = −pG where
pG is the pressure of shale gas liberated from fractured pores.

And so, fromhere andEq. (7.9.1), in the continuumapproximation for all fractured
area inside contour ZF , we get:

σr = σθ = −pm, σrθ = 0 (r0 ≤ r ≤ r∗); (7.9.2)

σr = −pG + (pG − pm)
r∗
r

, σθ = −pG, σrθ = 0 (r ≥ r∗ in ZF ) (7.9.3)

Evidently, r∗ increases if pm > pG , and r∗ decreases if pm < pG , but the boundary
velocity is much less than cT .
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In this case, using the method of functional equations, we come to the following
solution [4]

z = ω(ζ ) = D
(
2ζ 2 − μ

)2
ζ−3 (|ζ | ≥ 1); (7.9.4)

Φ(ω(ζ )) = −pG + 1

4
(1 + δT )wr − (wr + δtwr − 2pG)ζ 2

2ζ 2 − μ
. (7.9.5)

D = (pm − pG)r∗(
4 − μ2

)
(1 + δT − 2pG)wr

, μ3 + 4μ = 8(1 − δT )

1 + δT − 2pG
, pG = pG

wr
.

(7.9.6)

Function Ψ (ω(ζ )) coincides with that in Eq. (7.8.7) if, in Eq. (7.8.7), factor
wr (1 + δt ) is replaced by (1 + δT )wr − 2pG and λ is replaced by μ.

In this case, contour ZF of the fractured zone and its vertical and horizontal
diameters are provided by Eqs. (7.8.9) and (7.8.10), where λ has to be replaced by
μ, and B by D.

It can be shown that the solution given by Eqs. (7.9.4)–(7.9.6) exists when 2/3 ≥
μ ≥ 0. When μ = 2/3, some cusps appear at points x3 = ±D(2 + μ)2 so that for
μ > 2/3, two fractures grow in the intact rock along plane x1x3 issuing from those
points.

In this general case, the area of fractured rock is equal to

πD2(16 − 16μ2 − 3μ4) − πr20 . (7.9.7)

And so this regime of fracking is determined by the following four dimensionless
parameters δt , pm/wr , pG/wr and r∗/r0 which have to meet the following conditions

37δT ≥ 17 + 20pG, r∗/r0 ≥ 1, D(2 − μ)2 ≥ r0. (7.9.8)

The fractured area grows when pm > pG . When pG > pm , the gas pushes out
the drill mud and fractures close up to the level supported by proppants.
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Chapter 8
Fatigue and Superplasicity

Abstract This chapter deals with the birth and growth of dislocations and cracks
in nanoscale, when the atomistic structure of a material being taken into account.
Invariant integral is used as a basic variable. The fatigue crack threshold is determined
by one atomic spacing of the crack growth per cycle. Superplastic flow of superfine
grains is studied using the modified Arrhenius equation, and the theory of super-
plasticity is advanced. As a result, the neck-free elongation to failure, the maximum
possible elongation, the critical size of ultrafine grains necessary to stop the growth
of microcracks, characteristic dimensionless number, and other values of superplas-
ticity are calculated in terms of stress, strain rate, and temperature. The theory was
compared with, and supported by, the test data for the superplastic Pb–62%Sn eutec-
tic alloy and Zn–22%Al eutectoid alloy, obtained by famous Japanese scholars. This
chapter is designed for those who are interested in materials science.

Fatigue is a material property to fail under the action of cyclic or variable loads in
which magnitude is much less than ultimate strength. Fatigue is caused by the slow,
subcritical growth of microcracks. Superplasticity is a property of some materials
with ultrafine grains to neck-free elongations exceeding three andmore times original
length. Both are a subject of fracture nanomechanics drawn up for the scales from
some nanometers to some hundred micrometers. Invariant integral plays the role of
the basic parameter characterizing the growth and arrest of micro- and nanocracks.

The chapter is based on this author’s paper Theory of superplasticity and fatigue of
polycrystallinematerials based on nanomechanics of fracturing published in Journal
of Physical Mesomechanics, 21(6), 2018.

8.1 Introduction

Fracture nanomechanics is concerned with birth, growth, and arrest of cracks and
dislocations in the nanoscale. Below, it is used to build the theory of superplasticity
and fatigue of metals describing the fatigue threshold and enormous neck-free super-
plastic elongation in terms of strain rate, stress, and temperature. The optimum strain
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rate of the maximum superplastic elongation is determined in terms of temperature,
creep index, and other material constants. Further, we estimate the critical size of
ultrafine grains necessary to stop the growth of microcracks and open way to the
superplastic flow, and find the superplastic deformation of grains, their maximum
possible elongation and the activation energy of superplastic state.

A dimensionless number is introduced in order to characterize the capability of
different materials in yielding the superplastic flow. At a very high elongation, the
alloying boundary of grains proves to be broken by a periodical system of dead
fractures of some definite period. It is shown that experimental results of the testing
of the Pb–62%Sn eutectic alloy and Zn–22%Al eutectoid alloy have supported this
theory of superplasticity.

Fatigue Theory Fracturing from fatigue is caused by the slow growth of a crack
or microcrack due to the accumulation of local plastic deformations near the crack
front. The analytical theory of fatigue crack growth used an exact analysis of these
plastic deformations. According to this theory, the rate of the fatigue crack growth
for cyclic loadings in terms of invariant integrals is equal to [1–6]

dL

dn
= −β

(
�max − �min

�IC
+ ln

�IC − �max

�IC − �min

)
. (8.1.1)

here n is the number of loading cycles; dL/dn is the crack growth rate; �max and�min

are the maximum and minimum values of the main invariant integral of fracture
mechanics during the loading cycle designated as �1 in Eq. (1.5.2) above; �IC is the
maximum value of the main invariant integral corresponding to the gross fracturing
at the front of fast-moving crack; and β is amaterial constant of the length dimension.
In the case of compression, when KImin < 0, we should put �min = 0 in Eq. (8.1.1).

Let us remind how themain invariant integral of fracturemechanics� is expressed
in terms of stress intensity factors KI, KII and KIII [1–6]:

(i) Homogeneous, isotropic, and linearly elastic material

� = 1

2μ

[
(1 − ν)

(
K 2

I + K 2
II

) + K 2
III

]; (8.1.2)

(ii) Interface crack on the border of two dissimilar elastic materials

� = 1

4

(μ1 + μ2κ1)(μ2 + μ1κ2)

μ1μ2[μ2(κ1 + 1) + μ1(κ2 + 1)]

(
K 2

I + K 2
II

) + 1

4

(
1

μ1
+ 1

μ2

)
K 2

III.

(8.1.3)

Here, μ is the shear modulus, and κ = 3 − 4ν where ν is Poisson’s ratio.
In most practical cases, the fatigue crack grows as an open mode, tensile crack so

that KII = KIII = 0.
Equations (8.1.2) and (8.1.3) are valid only for the small-scale yielding when the

size of the region of plastic deformation near the crack-tip is much less than the crack
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length. Formore complicated cases, see the special literature [1–6]. As seen, themain
invariant integral is the governing parameter of subcritical fracture mechanics.

This simple analytical theory satisfactorily describes the tensile crack growth in
metals and alloys caused by cyclic loading, except for the cases of extremely low
loads and high subcritical loads [1–6]. Similar equations were derived for random
and any variable loads [5, 6].

Particularly, when �max � �Ic and�min = 0, Eq. (8.1.1) is reduced to the follow-
ing one

dL

dn
= 1

2
β

(
�max

�Ic

)2

(8.1.4)

This is the empirical Paul Paris’ law. Extensive tests showed that it works well in
most metals and alloys when the number of cycles to failure is not too large.

Both Eqs. (8.1.1) and (8.1.4) are not valid for extremely low loads when cracks
do not propagate, at all. This property is controlled by the threshold value �F of the
invariant integral such that, if the invariant integral �max is less than �F, the fatigue
crack does not grow. Evidently, in this case, it is necessary to use the methods of
fracture nanomechanics.

The value of �F is of paramount practical importance because the fatigue strength
of structures, especially made frommetals or alloys, is determined by their resistance
to the subcritical crack growth. It is difficult to find this value experimentally because
of enormous number of cycles necessary for adequate testing. The problem of �F is
addressed below in Sect. 8.2.

Superplasticity discovered just about half a century ago is poorly studied, and
all basic features of this phenomenon have been so far unexplained, although well
documented in experiments. The following questions are in need of answers:

(i) What ultrafine grain size is necessary for superplasticity, and why?
(ii) What is the maximum elongation to failure, and why is it so enormous?
(iii) How to characterize the superplastic property of a material in terms of its

physical microstructure and temperature?

These and other relevant problems are studied in Sects. 8.3–8.9 below from the
position of the nanomechanics of fracturing.

8.2 The Rule of Thumb: Fatigue Threshold

To study the start of the crack growth, it is necessary to take into account the atomic
structure of the material and emission of individual dislocations from the front of
the crack. This account has been provided by the nanomechanics of fracturing, see
[7–14]. According to its basic concept, the minimum value of the crack-tip growth
corresponding to the stable settlement of a first single pair of elementary edge dislo-
cations emitted from the crack-tip is equal to the interatomic spacing.
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This concept allows us to also evaluate the threshold value of the invariant integral
using Eqs. (8.1.1) or (8.1.4). According to these equations, the crack growth for one
cycle of loading, �L , is equal to

�L = 1

2
β

(
�max

�IC

)2

. (8.2.1)

Evidently,when the crackgrowth is equal to the interatomic spacing, themaximum
stress intensity factor in any loading cycle is equal to the threshold stress intensity
factor because the crack cannot grow for an amount less than the interatomic spacing.
From here and from Eq. (8.2.1), it follows that

�F

�Ic
=

(
2a

β

)1/2

(8.2.2)

Here, a is the interatomic spacing.
This equation requires some significant experimental work with measurements

of the controlled fatigue crack growth in order to determine the fitting constant β in
Eqs. (8.1.1) or (8.1.2). Then, Eq. (8.2.2) allows one to evaluate the threshold value
of the invariant integral �F for any specific material.

The analysis of many experimental works on the growth of fatigue cracks in
various metals and alloys has shown that the value of β varies in the range from
0.001 to 1 mm [1–6, 15]. Since a ≈ 10−7 mm, from here and from Eq. (8.2.2), it
follows that

�F = (0.001 ÷ 0.01)�Ic. (8.2.3)

From this estimate, we can derive that when �max < 0.001�Ic no crack growth
occurs and when �max > 0.01�Ic the fatigue crack growth is unstoppable like that of
an avalanche. In the latter case, the most important parameter to watch and control
is the time of loading. This is the simple rule of thumb.

The intermediate range 0.001�Ic < �max < 0.01�IC is more complicated for
study. In this range, a more accurate estimate can be given by using the model of two
rows of edge dislocation pileups on each side of the tensile crack [10].

8.3 Characterization of Polycrystalline Materials

Both local plastic deformations near a crack-tip and a crack growth are some inter-
connected effects taking place in polycrystalline materials simultaneously during the
loading part of a loading–unloading cycle. Both of them proceed in primary acts such
that the stable settlement of a pair of elementary edge dislocations emitted from the
tip of a tensile crack is always accompanied by the one interatomic spacing crack
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growth. Plastic deformation is a continuum description of the strain produced by
a very large number of dislocations. Everywhere below, we assume that the poly-
crystalline materials under study are homogenous and isotropic, except for some
designated cases. For the modeling purpose, we use the case of the cubic lattice of
atoms.

According to fracture nanomechanics, at the beginning of the process of loading,
the crack does not grow and no dislocations emanate from the crack-tip, until the
main invariant integral achieves some critical value �1 and the stress intensity factor
achieves some critical value of k1. At that moment, the crack grows one interatomic
spacing and simultaneously the first pair of elementary edge dislocations emanates
from the crack-tip and settles down at a certain distance whereby [7–14]

�1 = 13.25aτ0, k1 = 3.64
√
2aμτ0/(1 − ν). (8.3.1)

Here, μ is the shear modulus of the polycrystalline material; τ0 is its Schmid’s
constant of friction on gliding planes of the crystal lattice; ν is Poisson’s ratio; a
is the interatomic spacing; and �1 and k1 is the specific value of the main invariant
integral and the open-mode stress intensity factor KI for the cubic lattice of atoms. It
should be noticed that all criteria coincide, in terms of either the invariant integral or
the stress intensity factor, only in the case of the small-scale yielding and open-mode
fracturing.

This first pair of settled dislocations finds a stable position at distance ρ1 from the
crack-tip on the gliding planes issuing from the crack front under angles ±45◦ to the
crack plane in the cubic lattice of atoms so that [7–14]

ρ1 = μbe
4πτ0(1 − ν)

. (8.3.2)

Here, be is the absolute value of the Burgers vector of the elementary edge dis-
location depending on the parameters of the crystal lattice (be = a

√
2 for the cubic

lattice).
If the invariant integral is less than �1 or, the stress intensity factor is less than k1,

there are no stable-set dislocations and no crack growth so that Eq. (8.3.1) describes
the lowest threshold of the dislocation emission from the crack-tip and of the crack
growth.When� < �1, or KI < k1, no dislocations settle down and the crack does not
grow because, despite the infinite stress at the crack-tip, all dislocations emitted from
the crack-tip by thermal fluctuations are unstable and come back to the crack-tip.

For example, using Eqs. (8.3.1) and (8.3.2) for aluminum crystals [16, 17], we
get:

a = 2.85 × 10−7 mm, μ = 25 GPa, ν = 0.35, τ0 = 0.75 MPa,

�1 = 0.028
N

m
, k1 = 0.38 MPa

√
mm, ρ1 = 2.3 µm. (8.3.3)
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To compare: fracture toughness of structural aluminum, KIc, is of the order of
1 GPa

√
mmwhile kIc is of the order of 10 MPa

√
mmwhere kIc is the stress intensity

factor of the aluminum lattice for the brittle crack in the cleavage plane corresponding
to the dislocation-free growth of the crack.

Brittle Versus Ductile Behavior of Crystals Equations (8.3.1) and (8.3.2) allow
us to also characterize brittle versus ductile properties of crystals. The crack-tip can
advance not only by the ductile mechanism with emission of dislocations, but also
by a brittle mechanism. If the brittle mechanism is realized, the atomic bond ahead of
the crack-tip is ruptured without emission of dislocations. It occurs when the value
of �1 is greater than the surface energy of the dislocation-free crack growth or the
superfine scale stress intensity factor k1 at the crack-tip exceeds the critical value kIc
corresponding to this surface energy.

The superfine scale stress intensity factor kI is the total stress intensity factor at the
crack-tip which is equal to the sum of the stress intensity factors due to the external
load, KI, and to the elastic field of dislocations, kID. The dislocations generated by
the crack-tip during the loading process create a compression in the superfine scale
region of the crack-tip and, hence, cause the local relaxation of the stresses induced
by the external load so that [7–14]

kI = KI + kID (kID < 0). (8.3.4)

In other words, the generated dislocations play the role of a screen or shield
protecting the crack-tip from external loads.

And so, a crystal is ideally brittle, if the crack can grow along a cleavage plane
without to settle down any dislocations emitted from the crack front, that is, if the
following inequality is met

�1 > 2γ or k1 > kIc
(
kIc = 2

√
γμ/(1 − ν)

)
(8.3.5)

Here, γ is the true surface energy of the crystal along the cleavage plane. For
metal crystals, the value of γ has an order of 1 Pa m, and hence, for aluminum, the
value of kIc has an order of 10 MPa

√
mm so that due to Eq. (8.3.2), the aluminum

crystal is very ductile.
To characterize the brittle vs ductile behavior of crystals, it is useful to introduce

the dimensionless brittleness number as follows:

η = k1
kIc

(8.3.6)

A crystal is absolutely brittle if η > 1 so that the crack grows without the dislo-
cation generation. A crystal is ductile if η < 1 so that the dislocation emission starts
before the brittle crack propagation becomes possible.
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Using Eqs. (8.3.2) and (8.3.6), the brittleness number can be written as follows:

η = 2.165

√
τ0be
γ

(8.3.7)

The smaller η, the more ductile is the crystal. For crystal lattices other than the
cubic ones, the coefficient in Eq. (8.3.7) can be different.

The value of η was calculated for several common crystals. For example, in
diamonds, it is equal to about 1.5, and for aluminum 0.03 ÷ 0.04 depending on the
values of the surface energy and Schmid’s constant. Typically, for most metals, the
brittleness number varies in the range of 0.01–0.1.

8.4 Superplastic Materials: Ultrafine Grain Size

The discovery of superplastic materials, metglas, and graphene marked the greatest
advances of material science for the last half a century. On the scale of the techno-
logical impact, each one of them is comparable with the invention of bronze and iron
several thousand years ago noted down by historians as the Bronze and Iron Ages of
humankind.

Superplasticity is characterized by a very large neck-free elongation to failure
at elevated temperatures greater than about a half of the melting temperature Tm in
Kelvins. For example, the superplastic Zn–22%Al alloy specimen can extend 23.3
times its original length at temperature 473 K and at strain rate 10−2 s−1 while the
superplastic Pb–62%Sn alloy specimen can extend 76.5 times its original length at
temperature 473 K and at strain rate 2.12 × 10−4 s−1, see [18]. As a reminder, the
melting temperature of zinc and tin which are the base metals of these alloys is equal
to 693 and 505 K, correspondingly, while the melting temperature of their alloying
components, aluminum and lead, is equal to 933 and 601 K. In the special literature,
the base metal component is called also the host or parent metal [16–19].

The theory of superplasticity is given in Sect. 8.6 below. Usually, a material
behavior is called superplastic if the elongation to failure exceeds the original length,
at least, about three times. However, as shown below, the superplastic material can
extend to a much greater maximum when the temperature tends to the melting point.

To make a compound liquid metal superplastic, it should be cooled down very
fast from the liquid state to the solid one so that the base metal grains could be able
to grow up only to the size less than some critical value, below which no stable
dislocations can be born inside the solid grains and no stable microcracks can grow.
The base metal grain boundary made of other special components of the alloy forms
during the crystallization process as a result of pushing them out by the growing base
metal grain. Thus, they create an intergranular boundary layer which prevents from
the settle down of individual dislocations within the grains and from the growth of
any microcracks inside the grains. And so, there should be, at least, two components
in any superplastic metal alloy. Besides, the intergranular layer protects the base
metal from corrosion.
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Grain Size of Superplastic Materials According to fracture nanomechanics, the
size of grains should be less than the value of ρ1 characterizing the distance between
the first pair of stable dislocations and a crack-tip or another stress concentrator like
the vertex of a two-sided angle of the grain. And so, the grain size s should satisfy
the following requirement

s < α
aμ

τ0(1 − ν)
. (8.4.1)

here, number α varies from about 0.1 to 1 depending on the nature of the dislocation
generator inside the grain and its lattice type. For the sharpest concentrator, a crack-
tip, and the cubic lattice, α = 0.11 according to Eq. (8.3.2).

Let us estimate number α in Eq. (8.4.1) using a more realistic stress singularity
for the vertex of a two-sided angle between two dissimilar materials. In this case, it
can be shown that the balance equation of a pair of edge dislocations near a stress
concentrator is given by the following equation [7]

K

rn
= τ0 + μbe

4πr(1 − ν)
(0 < n ≤ 1/2) (8.4.2)

Here, r is the distance between the vertex of the stress concentrator and the position
of dislocations, n is the proper number characteristic for the angular stress singularity
[5, 6], and K is the intensity of the stress concentration proportional to the external
load, with the dimension being Nmn−2. In the case of a crack-tip, we get n = 0.5
and K = 0.327KI(2π)−1/2, see [7–13].

Function K (r) in Eq. (8.4.2) has one minimum at

r = ρ1 = 1 − n

n

μbe
4πτ0(1 − ν)

, K = k1 = τ0

1 − n

[
1 − n

n

μbe
4πτ0(1 − ν)

]n

(8.4.3)

These equations generalize Eqs. (8.3.1) and (8.3.2) for the crack-tip.
Hence, the first pair of stable edge dislocations emitted by this stress concentrator

settles at distance r = ρ1 when the external load measured by K achieves the value
of k1 in Eq. (8.4.3). No stable equilibrium dislocation position exists for K < k1.
According to Eq. (8.4.2), if K > k1 and the first pair of stable dislocations is set down,
their position r grows when K increases, until the second pair of stable dislocations
is born [7–14]. Equations (8.4.3) support the estimate of coefficient α in Eq. (8.4.1)
for 0.1 < n ≤ 0.5.

Using computerized calculations, the process of the dislocation generation by a
crack-tip in large crystals was studied up to many thousands of individual dislo-
cations, and the diagram of the stress intensity factor versus the crack growth was
calculated, see [7–12] formore detail. In the framework of this discrete atomicmodel,
the fracture toughness of the material was calculated as the limit of the stable growth
of the crack characterized by the maximum point on this diagram, after which the
unstable growth of the crack occurs.
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However, a crack-tip does not grow at kI < kIC and does not produce any stable
dislocations, if the size of grains in a polycrystalline material is less than ρ1. Thus,
the value of ρ1 in fracture nanomechanics characterizes the critical ultrafine grain
size of the superplastic state of the material if k1 � kIC which is usually the case.
This value is estimated by Eq. (8.4.1).

In superplastic materials under low temperatures, the ultimate and yield strengths
depend on the grain size as follows [4–6]:

σB
√
s0 ∼= KIC, σY

√
s0 ∼= KIIC (8.4.4)

here, σB is the ultimate strength; σY is the yield strength; s0 is the characteristic grain
diameter; KIC is the fracture toughness; and KIIC is the slip toughness of the material.

In terms of critical values of �c of the invariant integral, a more general relation
is valid

�c ≈ 1 − ν

2μ

(
K 2

IC + K 2
IIC

) ≈ 1 − ν

2μ
s0

(
σ 2
B + σ 2

Y

)
. (8.4.5)

For example, the decrease of the grain size from 10 µm to 10 nm makes the 31-
fold increase of the yield strength of some superplastic metals [18]. The equations,
analogous to Eqs. (8.4.4), are called the Petch–Hall–Straw–Cottrell equations to
honor their originators. However, under high temperatures close to the melting point,
the effect of surface tension dominates so that these equations turn to be invalid, see
below. Also, in the nanoscale the effect of surface tension becomes essential.

It is noteworthy that amicrocrack inside the grain starts on to grow as an absolutely
brittle one only after the superfine stress intensity factor achieves the value of kIC so
that the tensile stress σ and the size of the microcrack dc are connected as follows
[13]:

σ
√
dc = kIC. (8.4.6)

For example, in the aluminum-based grain under low tensile stress typical for the
superplastic state, e.g. σ = 33 MPa, the critical size of the brittle microcrack is equal
to dc = 100 µm which is much greater than the grain size in the superplastic state
so that the brittle failure cannot occur because kIC = 10 MPa

√
mm.

Critical Grain Size in Some Superplastic Metals According to Eqs. (8.4.1) and
(8.4.3), the aluminum grain size in superplastic state should be less than about 2µm.
Evidently, this result of calculation is valid for any Al-base alloys.

Using Eq. (8.4.3) for the crack-tip concentrator and Table 6.2 in the book [13],
let us provide the results of calculation of the critical size of grains in superplastic
state for the following base metals (in micrometers):

Aluminum (Al): 2.3; copper (Cu): 1.8; gold (Au): 2.6; nickel (Ni): 0.9; and lead
(Pb): 2;
Silver (Ag): 3.2; zinc (Zn): 5.8; ferrite (α—iron, Fe): 0.2; and white tin (Sn): 4.5.
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All of these metals, except for tin and zinc, have the face-centered cubic crystal
lattice (fcc), in accordance with the theoretical model served to derive Eq. (8.4.3).
Tin has the tetragonal lattice, and zinc the hexagonal-close-packed lattice (hcp);
therefore, the above figures for these metals, probably, need some corrections.

It is worthy of keeping in mind that these figures correspond to the minimum
values of Schmid’s constant observed in experiments [16, 17]. This constant which
is the friction stress on the gliding planes of a pure crystal is very sensitive to any
impurities so that any obstacles on these planes, beyond of atomic forces of the
crystal, significantly influence its value. The interstitial atoms of alloying elements,
which diameter is greater than the interatomic spacing of the lattice of the parent
metal, can significantly increase Schmid’s constant and, hence, decrease the critical
size of grains for the superplastic state to be realized. Any distortions of the crystal
lattice like original dislocations on other planes also increase this constant. On the
other hand, vacancies in the crystal lattice of the base metal can decrease Schmid’s
constant and, hence, increase the critical size of grains. Also, according to Eq. (8.4.3),
a slighter singularity of a two-sided angle can lead to an increase of this critical size
as compared to the crack-tip concentrator.

The Theory of Singularities of the Elastic Field Let us provide a short resume of
this theory given in [5, 6, 13]. There are point and linear singularities. The first
ones are point inclusions like interstitial or foreign atoms in the lattice of a parent
metal, or point holes like vacancies or small bubbles in this lattice. The second
ones are the fronts of cracks and dislocations, and the vertex of the two-sided angle
between dissimilar materials different from π . Also, it is necessary to distinguish the
S-singularities from the N-singularities.

The S-singularities possess the self-controlled fields independent of applied loads.
These are point singularities and dislocations. They obey Saint-Venant’s principle
and can drift in the stress field produced by applied loads without to change their
own fields like some invariable particles.

The N-singularities do not possess their own independent fields—their fields are
produced by applied loads and determined by them. These are crack fronts and
vertices of two-sided angles. They do not obey Saint-Venant’s principle. The crack
front can move in the stress field, usually with changing its own field in the process
of motion.

The drift of any singularity is governed by the corresponding driving force;most of
these forces were discovered during the last century. The first discoveries for massive
elastic solids were Irwin’s law for open mode cracks, Peach–Koehler’s law for edge
dislocations, and Eshelby’s law for point inclusions. Using invariant integrals, dozens
of other laws were found out for other important field singularities including point
holes, cracks and dislocations of arbitrary modes in anisotropic solids, interface
cracks, cavities, cracks and bubbles between shells, plates, membranes and solids,
solid–liquid contact fronts, and many others [4–6, 13, 14].

The drift of point inclusions and point holes in the field of cracks and dislocations
was studied earlier in [13] under some simplifying assumptions, e.g., of zeroSchmid’s
stress. In particular, all point inclusions and holes proved to drift into the crack front
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or dislocation core. It is easy to predict some effects of nonzero Schmid’s stress, for
example, appearance of some critical distances from the crack fronts and dislocation
cores such that outside of these distances point inclusions and holes cannot drift, at
all.

As to the original point singularities, like vacancies or foreign atoms in the iden-
tically stretched grains of base superplastic metals, it is evident that they do not drift
in the process of flow because their driving forces equal zero for this case of the
zero-gradient field of tensile stress. And so, vacancies and foreign atoms can sub-
stantially effect only upon the bulk properties of the base metal grains, for example,
upon μ, τ0, and kIC. In real distorted grains, some drift of vacancies and foreign
atoms toward the grain boundary occurs; however, this effect is small and ignored
in the present model, see the next section. Certainly, the diffusion and migration of
vacancies and foreign atoms governed by the temperature gradient play some role
most essential at high temperature.

Critical Temperatures of the Superplastic State In ultrafine grains of subcritical
size, the activity of any stable individual dislocations is suppressed so that the grains
can deform only by the uniform flow along gliding planes [7–14, 16–18]. According
to test data, the uniform neck-free flow in the superplastic state takes place for
temperatures greater than about half of the melting point [13, 14, 16–19]

T >
1

2
Tm (8.4.7)

At these temperatures, the thermal fluctuations activate the random generation
of many dislocations from a virtual generator inside a grain; however, all of these
dislocations are unstable and disappear [7–14]. As a matter of fact, superplastic flow
is creep of metals with ultrafine grains.

8.5 Superplastic Deformation and Flow of Ultrafine Grains

Let us study the extension and flow of a bar of a superplastic material at sufficiently
high temperatures and low tensile loads. We assume that all grains of the material
have one and same volume, and the material is incompressible. The first assumption
is justified by the simplicity of the following analysis, while the latter one is close to
reality for large deformations.

In polycrystalline materials, the large deformation and flow can, in principle, be
caused by a relative movement of neighboring grains (the sliding mechanism). How-
ever, it forms both open and sliding interface cracks, which size in the superplastic
flow would be much greater than the grain size; these cracks would grow in the
process of flow so that their healing by diffusion would require an enormous con-
centration and activity of foreign atoms. That is why we take into account only the
most probable mechanism of the superplastic flow of each grain, with no material
discontinuities arising between the neighboring grains.
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Grain Shape For very large deformations, as a result of stretching by tensile load,
every grain acquires a shape of a prolonged prism. In order to densely pack the
space, the prism cross section can be either equilateral triangle, or square, or regular
hexagon. All prisms have length l and cross-sectional area Ag so that l Ag = V0

where V0 is the constant volume of any grain in this model. In the process of flow,
length l increases and area Ag decreases.

The thin intergranular layer of alloying components cohering grains plays the
part of surface tension for the flowing base material. Out of possible three forms of
the prism cross section, square has a minimum perimeter for the prisms of the same
volume and length and, hence, provides for a minimum of surface energy of prisms
at any moment of flow. Therefore, according to the principle of minimum surface
energy, the cross section of all prisms is the square with side s so that Ag = s2 where
l � s. To be densely packed in the space, both front and rear faces of the prisms
should be flat. This packing order leaves no empty spacings between the prisms. All
succeeding calculations are assumed for the packing of this kind.

And so, in the process of superplastic deformation, the grains of arbitrary shape
become long identical prisms of square cross section, with the flat front and rear
faces.

Superplastic Zero-Dilatancy Flow In the process of flow, a bar of initial length L0

and initial cross-sectional area Ab0 acquires length L and cross-sectional area Ab so
that L Ab = L0Ab0. Besides, the number of grains in each cross section of the bar
remains constant during this process so that we have

L

l
= L0

s0

(
s30 = V0

)
(8.5.1)

Here, l is the length of each grain so that ls2 = V0 = const for any elongation.

And so, according to Eq. (8.5.1), the grain length l assumes the function of the
bar length L in terms of strain so that the strain rate ε̇(t) is equal to

ε̇(t) = 1

L

dL

dt
= 1

l

dl

dt
(t is time) (8.5.2)

According to Eq. (8.5.2), length l assumes as well the function of time for a given
strain rate because

ln
l

s0
=

t∫
0

ε̇(t)dt (l = s0 when t = 0) (8.5.3)

The volume strain rate is zero so that for the grain thickness, we get
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ln
s

s0
= −1

2

t∫
0

ε̇(t)dt (8.5.4)

In this model, the deformation and flow of a single grain determines the deforma-
tion and flow of the whole specimen.

For the well-developed superplasticity, when l � s, the mass of the base metal
grain is equal to mb = ρbls2, and the mass of the alloying ingredient in the inter-
granular layer equals ma = 2ρalst per grain so that we have

t

s
= ρbma

2ρamb
(8.5.5)

Here, t is the thickness of the intergranular layer, and ρa and ρb is the mass density
of the alloying and base metals.

For example, in Pb–62%Sn eutectic alloy where tin is the base metal, and lead is
the alloying ingredient, we get t/s = 0.1.

8.6 The Theory of Superplasticity: Elongation to Failure

The large neck-free elongation to failure is the main property describing the super-
plastic behavior of some materials at low stresses and high temperatures. In general
terms, this phenomenon can be understood using the kinetic theory of fracture, see
Chap. 2 in [13]. According to this theory, the time to failure of a stretched bar is
equal to

tF = τ0 exp
UF − σvA

RT
(8.6.1)

here, σ is the tensile stress in the bar; tF is the time to failure; UF is Arrhennius’
chemical activation energy of the given material substance equal to about 102 to 103

KJ per gram atom or grammole for condensedmatter, which characterizes fracturing
and is close to the binding energy of the substance; T is the absolute temperature in
Kelvins; vA is the bar activation volume per gram mole or gram atom, in which the
active failure occurs; τ0 is the characteristic time of an elementary thermal fluctuation,
namely the propagation time of phonons on one interatomic spacing, which is about
10−13 to 10−12 s; and R is the universal gas constant equal to 8.31 J per gram mole
and per Kelvin.

In this equation, Eq. (8.6.1), Boltzmann’s constant is often used instead of the
universal gas constant so that in such a case, UF and vA are taken per one atom or
molecule of the substance. As a reminder, the universal gas constant equals Boltz-
mann’s constant times the Avogadro number.
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The extensive experimental investigation of the long-term strength of bars made
of various common materials under stationary tensile loads demonstrated the appli-
cability of Eq. (8.6.1) to a wide range of loading times from some microseconds to
several months and absolute temperatures from close to zero to the melting point [13,
14, 16, 17]. Despite some obvious shortcomings of this equation, it provides a good
common sense estimate of time to failure in an exceptionally broad range of time
and temperature. However, this theory was done before the era of superplasticity so
that its extrapolation for the superplastic state constitutes a hypothesis that should be
independently verified.

The strain rate of the steady superplastic flow or creep of a bar is governed by the
following empirical constitutive equation [13, 14, 16, 17]

ε̇ = r0

(
σ

σ0

)n

exp

(
− Uc

RT

)
(8.6.2)

Here, ε̇ is the strain rate; σ is the tensile stress; n is the dimensionless creep index
which formostmetals usually varies in the range of 2–10, and in the superplastic state,
it can be much greater; Uc is the activation energy per gram atom characterizing the
creep or superplastic flow; and r0 and σ0 are some fitting constants of the dimension
of strain rate and stress, respectively.

Suppose the strain rate and the stress do not vary in time during test which is the
case in most common test procedures. In this case, from Eq. (8.5.3), it follows that

ln
lF
s0

= ε̇tF (8.6.3)

Here, lF is the grain length at failure which is directly proportional to the specimen
length at failure LF. According to Eq. (8.5.1), we have

LF

L0
= lF

s0
(8.6.4)

Replacing tF and ε̇ in Eq. (8.6.3) by Eqs. (8.6.1) and (8.6.2) and using Eq. (8.6.4),
we come to the following equation

ln
LF

L0
= τ0r0

(
σ

σ0

)n

exp
�U − σvA

RT
(�U = UF −Uc) (8.6.5)

The activation energy characterizes the energy barrier which is necessary to over-
come in order that a chemical or physical transformation would take place. This
barrier is greater for fracturing than for creep or superplastic flow so that the value
of �U is always positive. For the superplastic flow, quantity �U plays the role of
the activation energy of failure/fracturing.
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Equation (8.6.5) provides the specimen length at failure in terms of tensile stress.
Let us write down this equation as follows:

y = Bxne−λx (8.6.6)

(
x = σ

σ0
; y = ln

LF

L0
; B = τ0r0 exp

�U

RT
; λ = vAσ0

RT

)

Function y = y(x) has the maximum value y = y∗ at x = x∗ so that

x∗ = n

λ
, y∗ = B

( n

eλ

)n = B
( x∗
e

)n
(8.6.7)

when x grows from zero to infinity, y increases from zero to the maximum and then
decreases tending to zero at infinity.

We accept as a definition that a material is in the superplastic state, if y∗ > 1, that
is, based on Eq. (8.6.7), if the following inequality is met

n > eλB−1/n (8.6.8)

We call a material ideally superplastic if y∗ � 1. The greater is the value of y∗,
the more superplastic is the material. (When LF = eL0, then y = y∗ = 1.)

According to Eqs. (8.6.6) and (8.6.7), the maximum superplastic elongation y∗ in
terms of temperature is given by the following function

y∗ = τ0r0(δT∗)n exp
1

T∗
(8.6.9)

T∗ = T R

�U
, δ = n�U

eσ0vA
(8.6.10)

Function y∗ = y∗(T∗) in Eq. (8.6.9) has the minimum value at T∗ = 1/n and is
infinite at zero and at infinity.

The superplastic state can take place only if T∗ > 1/n so that, from here and from
Eq. (8.6.10), it follows that the necessary condition of superplasticity is

T >
�U

nR
(8.6.11)

Since T > Tm/2 according to test data, Eq. (8.6.11) provides a useful estimate
for the activation energy of failure in the superplastic flow in terms of the melting
point

�U = 1

2
nRTm (8.6.12)
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This fundamental relation allows us to simplify Eqs. (8.6.5) and (8.6.7) as follows:

max ln
LF

L0
= τ0r0

(
nRT

eσ0vA

)n

exp
nTm
2T

(
σ

σ0
= n

λ
, Tm > T >

1

2
Tm

)
(8.6.13)

ln
LF

L0
= τ0r0

(
σ

σ0

)n

exp
(
−σvA

RT

)
exp

nTm
2T

. (8.6.14)

According to Eq. (8.6.2), the tensile stress can be expressed in terms of the strain
rate

σ

σ0
=

(
ε̇

r0

)1/n

exp
Uc

nRT
(8.6.15)

FromEqs. (8.6.7) and (8.6.15), it follows that themaximumelongation is achieved
when the strain rate is equal to

ε̇∗ = r0
(n
λ

)n
exp

(
− Uc

RT

)
(8.6.16)

This strain rate is called the optimum strain rate.
The comparison of this theory with test data as well as some consequences and

ramifications are given in the next Sects. 8.7 and 8.8.

8.7 Characterization of Superplastic Materials: The
A-Number

To characterize the capability of different materials in yielding the superplastic flow,
let us introduce the following dimensionless number (the A-number)

A = max ln
LF

L0
(8.7.1)

According to Eq. (8.6.13), the A-number is a function of temperature that can be
written as follows:

A(T ) = A(Tm)

(
T

Tm

)n

exp

[
n

2

(
Tm
T

− 1

)] (
Tm ≥ T >

1

2
Tm

)
(8.7.2)

A(Tm) = τ0r0e
−n/2

(
nRTm
σ0vA

)n

. (8.7.3)
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Evidently, the greater the A-number, the more superplastic is the material at a
given temperature. From Eq. (8.7.2), it follows that the A-number increases, i.e., the
material becomes more superplastic, when temperature grows.

Maximum Superplastic Elongation of Grains at Melting Point Let us estimate
the superplastic elongation of a base grain at its melting temperature when the elon-
gation achieves maximum. We assume that the melting point of the base grain is less
than that of its alloying boundary, which is usually the case. At this melting point,
the solid alloying boundary of a base grain plays a role of the shell that bears all
loads like the surface tension in liquids or a tensile tension in membrane shells.

Usually, the metal of the boundary layer is more strong and brittle than the base
metal of the grain so that at large elongations, the boundary layer is torn by a periodic
system of fractures, every one of which encircles the cross section of a long prism
of the base metal grain (see below). In the process of flow, these fractures become
wide gaps or cavities filled by vapor of the base metal. They cannot bear a load so
that, in this limiting case of the melting temperature, it is the real surface tension of
the liquid base metal that bears the tensile load.

And so, in this limiting case, the following equilibrium equation holds for the
square cross section of the liquid base metal grain

σ smin = 4γB (8.7.4)

Here, γB is the surface tension of the base metal at melting point.
From here, using also Eqs. (8.6.4), (8.6.7), and (8.7.1), we can find

A(Tm) = 2 ln
ns0RTm
4γBvA

(8.7.5)

The value of λ defined by Eq. (8.6.13) is equal to the tangent of the angle consti-
tuted by the straight lines of Eq. (8.6.2) written in terms of ln(τF/τ0) versus σ/σ0 as
follows:

ln
τF

τ0
= UF

RT
− λ

σ

σ0
(λRT = vAσ0) (8.7.6)

These linear diagrams are well known in the kinetic theory of failure [13, 14, 16,
17].

As well, it is convenient to use the constitutive Eqs. (8.6.2) or (8.6.15) in the
following shape

ln
ε̇

r0
= − U

RT
+ n ln

σ

σ0
(8.7.7)

It represents the superplastic behavior by straight lines on this logarithmic diagram
where the creep index is the tangent of the inclination angle.
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Using Eq. (8.7.5), the equation for the A-number, Eq. (8.7.2), can be written as
follows:

A = 2

(
T

Tm

)n

exp

[
n

2

(
Tm
T

− 1

)]
ln

ns0RTm
4γBvA

. (8.7.8)

This is the final equation for the A-number that characterizes the superplastic
property of a metal in terms of its temperature, melting point, creep index, initial
grain size, surface tension of liquid metal, and activation volume.

From Eqs. (8.7.1) and (8.7.5), it follows that the upper boundary of the maximum
superplastic elongation (at the melting point) is given by the following equation

max
LF

L0
=

(
ns0RTm
4vAγB

)2

(8.7.9)

As a result, we have got Eqs. (8.7.1) and (8.7.8), the former providing the A-
number from experiments, and the latter from the given theory.

8.8 Comparison of the Theory with Test Data

Experimental results are usually given in terms of elongation versus strain rate. In
these variables, the theoretical Eqs. (8.6.13) and (8.6.14) are reduced to the following
equation

y = Bx exp
(−δx1/n

) (
x = ε̇

r0

)
. (8.8.1)

here

y = ln
LF

L0
, (8.8.2)

B = τ0r0 exp

(
Uc

RT
+ nTm

2T

)
, (8.8.3)

δ = vAσ0

RT
exp

Uc

nRT
. (8.8.4)

Let us compare this theory with test data for two typical superplastic alloys taken
from the book by Padmanabhan and Davis [18] and from the paper [19] by Kawasaki
and Langdon.

It is reasonable to choose the dimensionless constants n, δ, and B from the same
test data. Also, we normalize the value of strain rate by equation r0 = ε̇ at the
maximum of function y = y(x) where the maximum elongation is achieved. Since
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its derivative is equal to

dy

dx
= B exp

(−δx1/n
)(

1 − δ

n
x1/n

)
, (8.8.5)

we get the following two condition equations at the point x = xm of the function
maximum, y = ym

δ = nx−1/n
m , B = ym

xm
en. (8.8.6)

The only one more equation necessary to find constant n can serve the test result
y = y∗ at the lowest value of loading x = x∗ so that according to Eq. (8.8.1), we
have

Bx∗ = y∗ exp
(
δx1/n∗

)
. (8.8.7)

The equation system, Eqs. (8.8.6) and (8.8.7), is reduced to the following equa-
tions:

2 ln 10 = −n ln

(
1 − b

n

)
, (8.8.8)

b = ln
xm y∗
x∗ym

, (b > n). (8.8.9)

After we find n = n(b) fromEq. (8.8.8), the values of δ andB can be calculated by
Eqs. (8.8.6). After that, the value of y determining the length of specimen at failure
can be found using Eq. (8.8.1) that can be written as follows:

y

ym
= x

xm
exp

{
n

[
1 −

(
x

xm

)1/n
]}

. (8.8.10)

Pb–62%Sn Eutectic Alloy [18] First, using Eq. (8.7.8), let us calculate the A-
number for tin in the Pb–62%Sn alloy at T = 252.5, 473, and 505 K where
Tm = 505 K is the melting point of tin, the base metal.

We accept the following typical figures for white tin:

RTm = 4.2 KJ per gram-atom; vA = 103 cm3 per gram-atom;
n = 16 (see below); s0 = 4.5 µm; γ B = 200 Pa cm.

As a result, we get:

A(252 K) = 0.32; A(T ) = 4.34 at T = 473 K; A(Tm) = 7.19,

so that maxLF/L0 equals 1.38 at 252 K, 78.1 at 473 K, and 1200 at 505 K.
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According to the experimental data [18], the Pb–62%Sn eutectic alloy speci-
men experiences the maximum length 76.5 times its original length at strain rate
2.12 × 10−4 s−1 and temperature 473 K. And so, at this point, the test results well
support the theory. According to the theory, in the limit, the specimen of this super-
plastic alloy can extend 1200 times its original length at melting point so that its
diameter becomes 35 times less than the initial value before loading.

Also, let us compare the results of calculation of superplastic elongation using
Eq. (8.8.1) with other test data given in book [18] for the Pb–62%Sn eutectic alloy
at T = 473 K:

ε̇, s−1 2.12 × 10−4 1.06 × 10−3 5.29 × 10−3 2.12 × 10−2

�L

L0
(test) (%) 7550 4600 2800 630

ln
LF

L0
(test) 4.34 3.85 3.36 1.99

ln
LF

L0
(theory) 4.34 3.99 3.08 2.08

Here, the following values of constants were used in Eq. (8.8.1):

n = δ = 16; r0 = 2.12 × 10−4 s−1; B = e16 ln 76.5.

In this case, the maximum superplastic elongation is achieved at ε̇ = r0.
As seen, the discrepancy between the theory and the test is about 4% in average

so that we can conclude the theory is confirmed by the test results because the
discrepancy is within the scatter of experimental results caused by many factors
ignored either in the test or in the theory. The elongation to failure is very sensitive
to these unaccounted factors, which explains wide scatter of data in tests.

Zn–22%Al Eutectoid Alloy [19] First, let us provide some figures characterizing
the effect of the value of creep index on the superplastic flow at the lowest temperature
T = 0.5 Tm of superplasticity. From Eq. (8.7.2), we can find:

A(T )/A(Tm) 0.46 0.38 0.314 0.14 0.045

n 4 5 6 10 16

And so, even at the lowest temperature, this effect is substantial.
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Let us consider the test results of the extension of the Zn–22%Al eutectoid alloy
specimens at 473 K for several strain rates [19]:

ε̇, s−1 10−4 10−3 3.3 × 10−3 10−2 3.3 × 10−2 10−1 1.0
�L

L0
(test) (%) 670 1410 1600 2230 1890 1010 520

ln
LF

L0
(test) 2.04 2.7 2.83 3.15 2.99 2.40 1.82

In these tests, no necking up to failure was observed. The material was originally
treated by equal channel angular processing (ECAP) to produce grains of the size
about 0.8 µm. After ECAP, specimens of 2 × 3 × 4 mm size were made to test.

In order to calculate the corresponding theoretical values of elongation to failure,
we can use Eqs. (8.8.6) to (8.8.10) where the following figures are valid for this test:

x1 = 10−4 s−1; xm = 10−2 s−1; y1 = 2.04; ym = 3.15.

For these figures, the root of Eq. (8.8.8) with a less than 0.5% error is given by

n = 23. (8.8.11)

In accordance with the theory, when the strain rate grows, the elongation to failure
increases until a certain maximum is achieved at the optimum strain rate which is
equal to about 10−2 s−1, and then the elongation to failure decreases.

Using the indicated figures and Eqs. (8.8.10) and (8.8.11), let us calculate the
theoretical values of y/ym and compare them with the experimental ones:

x

xm
10−2 10−1 0.33 1 3.3 10 100

(
y

ym

)
test

0.65 0.86 0.90 1 0.95 0.76 0.58

(
y

ym

)
theory

0.65 0.88 0.91 1 0.96 0.78 0.61

However, despite a very good compliance of this theory with the test results, we
should keep in mind that Kawasaki and Langdon concluded that “grain boundary
sliding is the dominant flow process during superplastic elongation” while in the
present calculation of the strain rate, the boundary sliding is ignored and it is only
superplastic elongation that is taken into account. And so, this compliance questions
the fundamental conclusionof the original authors about the role of the pure stretching
versus the boundary sliding in the mechanism of superplastic deformation. Another
drastic difference is in the value of parameter n of strain rate sensitivity, which is
found here to be equal n = 23 while Kawasaki and Langdon estimate it to be within
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2–10 at different intervals of the strain rate of grains. The kinetic theory used here
takes into account both stretching and sliding mechanisms leading, in sum, to the
enormous values of creep index.

These cardinal differences, however, require further studies of the mechanism
of superplastic deformation. The Zn–22\%Al alloy is of special interest for super-
plasticity because both its components, zinc and aluminum, have ultrafine grain size
and are superplastic at 473 K since this test temperature is greater than half of their
melting temperatures, 693 and 933 K.

8.9 Periodic System of Fractures in the Bonding Layer

An alloying metal of a thin layer that bonds two neighboring grains of a base metal
usually has a greater melting temperature and is less superplastic than the base metal.
As a result, at a sufficiently large extension, the bonding layer of each grain breaks
with many cross-sectional fractures and turns into a periodic system of streaks of
length 2Ls separated by the fractures.

Bonding streaks bridge the base metal grains. We assume that the streak length
is much greater than its thickness t, i.e., Ls � t . Also, we assume that the x-axis is
chosen along the extension direction, that is, along the stretched grain and streak,
with the origin being at the center of a streak. The streak is subject to the tensile
stress σ(x) inside and the shear stress τ(x) on both interfaces of the streak bordering
the base metal. These stresses bear the external load of the bar extension; they are
tied by the following equilibrium equation

t
dσ

dx
= −τ (−Ls < x < +Ls) (8.9.1)

Also, let us assume that the streak is subject to yieldingunder plane strain condition
and use the Mises yielding criterion so that

σ 2 + 6τ 2 = σ 2
Y. (8.9.2)

Here, σY is the yield strength of the alloying metal at the test temperature.
The solution of the equation system, Eqs. (8.9.1) and (8.9.2), satisfying the bound-

ary condition σ = 0when x = ±Ls can be written as follows:

σ = σY cos
πx

2Ls
, τ = 1√

6
σY sin

πx

2Ls
, (8.9.3)

Ls = π t
√
1.5. (8.9.4)

Hence, the streak length is about 7.7 times greater than its thickness which suf-
ficiently well complies with the original assumption. However, we should keep in
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mind that the value of thickness corresponding to the developed superplastic flow is
much less than it was initially.

Summary The present chapter looks into the fracturing, creep, and fatigue of poly-
crystalline superplastic materials at the nano- and microscales of their structure. It
is shown that a rule of thumb can be used for a simple estimate of safe cycling load-
ings. The ultrafine grain size necessary for superplastic flow is estimated in terms of
material and physical constants. The maximum elongation to failure under extension
of rods is calculated using the kinetic theory and methods of the nanomechanics of
fracturing. The dimensionless A-number is introduced to characterize the yielding of
materials with ultrafine grains to the superplastic flow. For two popular superplastic
alloys, elongations to failure are determined and compared to some test data.
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Chapter 9
Snow Avalanches

Abstract In this chapter, the snowpack compressed by the gravity of snow is mod-
eled as a multilayer sandwich on a slope with several parallel planes of transverse
slippage. The invariant integral of snowpack describes the critical state at the head of
this structure when the avalanche starts onmoving. This critical state is characterized
in terms of physical and geometrical parameters of snow and slope. The solution
of the avalanche motion equation was used to simulate the motion of the famous
avalanche that happened on February 7, 2003, in Vallee de la Sionne in Switzerland.
Also, the progressive failure of skyscrapers is studied and compared with the similar
mechanics of avalanches. As applied to the WTC collapse on September 11, 2001,
it is shown that its progressive failure would have taken more than 15 cek while,
in fact, it took about 12 s which is characteristic for the free-fall demolition. This
chapter is for those who are interested in the analysis of progressive failure leading
to disasters and catastrophes.

In this chapter, the invariant Γ −integral of fracture mechanics is used to calculate
the frontal pressure and resistance to the downward motion of a snow avalanche.
A basic characteristic property of the snowpack termed the entrainment toughness
is introduced. From an analysis of the non-entrainment frictional mechanisms of
avalanches, we find the necessary condition for a fracture-entrainment regime, and
from an analysis of limiting equilibrium of gravitational force and frontal resistance,
the necessary condition equation for the start of avalanches. We then derive the
governing equations for the dynamics of avalanches by using a point-mass approach,
but taking into account entrainment. The governing equations are used to numerically
simulate theVallée de la Sionne avalanche of February 7, 2003, in Switzerland,which
was carefully monitored and measured by Alpine services.

The chapter is based on the paper A fracture-entrainment model for snow
avalanches by G. P. Cherepanov and I. E. Esparragoza published in Journal of
Glaciology, 54(184), 2008. The mathematical theory of avalanche-type destructions
was first advanced by the present author in the paper Mechanics of the WTC col-
lapse published in Journal of Fracture, 141, 2006 (submitted in July 2005); see also
Sect. 9.9 of this chapter and papers [1–5].
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9.1 Introduction

Entrainment in snow avalanches is the key to understanding the motion of snow
masses and hence to predict their speed, impact pressures, and final runout distance
[6, 7]. Different avalanche entrainment mechanisms and rates have been reported by
Sovilla et al. [8] who analyzed a total of eighteen avalanche events, many captured
at the instrumented Vallée de la Sionne test site. In this survey of snow entrainment,
three different entrainment mechanisms were identified: plowing, step entrainment,
and basal erosion. The maximum entrainment rates (350 kg m−2s−1) were found to
occur during frontal plowing and step entrainment.

The step entrainment mechanismwas observed to occur by a fracture failure at the
interface of two snow layers, while themultilayer entrainmentmodel [8] assumes that
entrainment processes are governed by snow strength, primarily the shear resistance
of snow. This entrainment model is based on the earlier work of Russian snow
scientists [9]. Although this model provides the correct entrainment rates, it requires
shear strength values with no clear physical basis.

In this chapter, we use the invariant Γ −integral of solid and fracture mechanics
for the calculation of energy balance, frontal pressure, and frontal resistance to the
motion of the avalanche by the snowpack. A method to model the step entrainment
process was identified by Sovilla et al. [10]. The frontal resistance is calculated,
which allows us to determine the necessary condition governing the entrainment
regime. For the start of avalanches, a limiting equilibrium condition equation is also
found. Then, we derive the governing equations for the dynamics of avalanches in the
simplest approach, taking into account entrainment, inertia, gravitation, and friction
forces using the Voellmy–Salm model [11].

These governing equations are solved numerically and the Vallée de la Sionne
avalanche of February 7, 2003, is simulated.Maximumpossible acceleration of snow
avalanches is calculated and compared with the acceleration of the avalanche-type
fracturing wave that destroyed the World Trade Center in New York on September
11, 2001.

9.2 Frontal Resistance in the Fracture-Entrainment Mode

Assuming amultilayer snowpack, let us calculate the frontal resistance due to entrain-
ment. Also, let us assume that slip fractures at the layer interfaces in the process zone
govern the resistance (Fig. 9.1). The energy balance of forces in this zone is given by
means of the invariant Γ −integral of fracture mechanics. The avalanche is assumed
to move in the direction of the x1− axis, with the x2− axis being perpendicular. The
x3− axis is perpendicular to the x1− and x2− axes so that Ox1x2x3 form the right
triad.
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h

Avalanche
Snowpack

V x2

x1

Snow

Bed

Fig. 9.1 Integration contour of the invariantΓ −integral over the process zone based on themodified
SBB fracture-entrainment model. Interface slips along the boundaries of adjacent layers. Closed S
contour embraces the process zone, the direction of integration being shown by arrows

Figure 9.1 represents a schematic snapshot of the process zone at a certainmoment
of time. The frontal resistance is a result of interactive stresses and strains in the
process zone and can be calculated from the energy balance in this zone. For the
purpose of such a calculation, we make the following assumptions for the process
zone:

1. The bed is an elastic continuum half-space x2 < 0 with one slip fracture along
the interface boundary x2 = 0 (Fig. 9.1).

2. Snow in front of the avalanche is a multilayer continuumwith several boundaries
along x2 = const being subject to slip fractures (Fig. 9.1). Inertial forces in the
process zone are small in comparison to the fracture resistance.

3. All dissipative processes in the process zone are assumed to be concentrated
along several slip discontinuities on interfaces at x2 = const so that the material
outside of these discontinuities (fractures) is an elastic continuum.

4. The front of the snowpack is a solid line along x1 = const where the constant is
different for different layers (Fig. 9.1). The shear stress on the front is zero, and
the normal stress σ11 which is the frontal avalanche pressure of snow is equal to

σ11 = RF/h. (9.2.1)

Here, h is the thickness of resting snow layer in front of the snowpack and RF is
the frontal resistance to be found from the energy conservation law.
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5. Plane strain is assumed.
The dissipative processes on slip discontinuities including their ends are taken
into account in Fig. 9.1 by the paths over the upper and lower banks of discon-
tinuities with small circular path surrounding the ends of discontinuities. The
necessity of these circular paths is a result of the fact that what happens with
the material at the extreme ends under high stresses and strains in very small
volumes is unknown.

We can only characterize the dissipative process inside a small circular zone by
a specific dissipation energy spent to advance the discontinuity of unit length. Thus,
the snow cover in the process zone is subject to comparatively small deformations up
to failure, with both elastic and inelastic components produced by the front pressure
of the avalanche.

The law of energy conservation in a solid continuum inside a closed contour can
be written in the form of the invariant Γ −integral [12–14] taken over the closed
contour S embracing the process zone with discontinuities (Fig. 9.1).

∮
S

(
Wn1 − σi j n j ui,1

)
dS = 0, (i, j = 1, 2, 3). (9.2.2)

Here, W is the volume density of deformation work, n j are the components of the
outer unit normal to contour S, σi j are the stress tensor components, and ui are the
displacement vector components.

The integral over the upper surface of snow layer x2 = h is equal to zero because
n1 = 0, n2 = 1 and σi j n j = 0 for i, j = 1, 2, 3 since there is no loading on the free
surface.

The integration path in the bed can be taken in the form of a circle of large radius
R where R � h. The stress–strain field in the bed far from the process zone tends
to that of concentrated force (RF, 0). The Γ −integral over this circle represents the
Γ −residue of the concentrated force, and it is equal to zero in this case.

The Γ −integral over the front of the snowpack where x1 = const, n1 = 1,
n2 = 0, σ12 = 0, and σ11 = RF/h is equal to

∫ h

0

(−W + σ11u1,1
)
dx2 = h

(
W − σ11u1,1

) = (−1 + 2ν2 − 2ν3
) R2

F

2Eh
(9.2.3)

because from Hooke’s Law for the plane strain, it follows that

u1,1 = 1 − ν2

E
σ11, σ33 = νσ11, u1,2 = u2,1 = 0,

u2,2 = −ν(1 + ν)

E
σ11, W =

(
1

2
+ ν3

)
1

E
σ 2
11, (9.2.4)

since σ22 = 0 in the common thin plate approximation as applied to the snow layer.
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Now, let us calculate the integrals over the slip discontinuities along x2 = const
where:

(i) n1 = 0 and n2 = ±1 (“plus” for the upper bank and “minus” for the lower
bank);

(ii) σ22 = 0 in the thin plate approximation; and
(iii) σ12 = τi,i+1.

Here, τi,i+1 is the limiting shear stress on the slip discontinuity between the ith and the
(i + 1)th layer. The integral over the upper and lower banks of the ith discontinuity
is equal to �iτi,i+1 where �i = 2

∫ Li

0 u1,1 dx1 is the summary displacement jump
between the upper and lower banks of the discontinuity accumulated at the front of
the snowpack, the so-called transverse shear crack distortion (here, Li is the length
of the ith discontinuity).

The integral over the small circular path surrounding the singular end of the ith
discontinuity is equal to ΓCi where ΓCi is the dissipation energy spent to increase the
ith discontinuity by a unit length.

Combining these particular calculations in Eq. (9.2.2) provides

(
1 − 2ν2 + 2ν3

) R2
F

2Eh
=

N∑
i=1

�iτi,i+1 +
N∑
i=1

ΓCi (9.2.5)

Here, N is the number of discontinuities (in our particular case, we have N = 3).
Equation (9.2.5) allows us to formulate the frontal resistance RF in terms of h and

structural material constants as follows:

RF = KE

√
2h, (9.2.6)

where

KE =
√√√√ E

1 − 2ν2 + 2ν3

(
N∑
i=1

ΓCi +
N∑
i=1

�iτi,i+1

)
. (9.2.7)

In the case of identical limiting shear stresses when τi,i+1 = τs for any i, we get

KE =
√√√√ E

1 − 2ν2 + 2ν3

(
N∑
i=1

ΓCi + �τs

)
. (9.2.8)

Here, � = ∑N
i=1 �i is the summary shear displacement in the process zone near the

front of the snowpack.
The parameter KE termed the entrainment toughness characterizes the resistance

capabilities of the material in the process zone in front of the avalanche. The deter-
mination of this value from actual avalanche data is required to predict avalanche
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motion with entrainment. According to Eq. (9.2.7), the fracture work lost by an
avalanche on a unit length of its path can be expressed in terms of the entrainment
toughness as follows:

N∑
i=1

ΓCi +
N∑
i=1

�iτi,i+1 = 1 − 2ν2 + 2ν3

E
K 2

E. (9.2.9)

Therefore, this formula describes the arresting capabilities of the process zone in
front of the avalanche.

9.3 The Fracture-Entrainment Threshold

The fracture-entrainment mechanism described in the preceding section provides
only the frontal resistance force of the snowpack, RF, due to the frontal fracturing.
Another possible entrainment mechanism is by shearing the interfaces between snow
layers. To determine the resisting force of this friction process, first let us study the
limiting equilibrium of the ith snow layer with a through slip plane CD inclined
by angle βi to the x1− axis (Fig. 9.2). The tangential (shear), τn , and normal, σn ,
components of stress on this interfacial slip plane obey Coulomb’s Law

τn = τi + |σn| tan ϕi . (9.3.1)

Here, τi is the adhesion constant, and ϕi is the angle of internal friction in the ith
layer.

Avalanche
Snowpack

x2

x1

Snow

Bed

i
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D
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n

t

Fig. 9.2 Non-entrainment mode of frontal resistance in the SBB multilayer model. Through slips
AB, CD, EF, and GH and interface slips BC, DE, and FG along the boundaries of layers
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Values of τi and ϕi for snow avalanches derived from chute experiments can be
found in [15]. Taking into account that σ22 = 0 in the thin plate approximation, we
have the following two equations of equilibrium:

|σn|cosβi = |τn|sinβi , Ri = hi |σn| + hi |τn|cosβi

sinβi
. (9.3.2)

Here, hi is the thickness of the ith layer, and Ri is the component of the friction
resistance caused by the ith layer.

Solving the equation system, Eqs. (9.3.1) and (9.3.2), we obtain:

|τn| = τi

1 − tanϕi tanβi
, |σn| = τi tanβi

1 − tanϕi tanβi
; (9.3.3)

Ri = 2hiτi
sin(2βi )(1 − tanβi tanϕi )

. (9.3.4)

Let us analyze Ri as a function of βi . This function tends to plus infinity when

βi → 0+ and βi →
(π

2
− ϕi

)
−. Hence, it has, at least, one minimum in βi ∈[

0,
π

2
− ϕi

]
−. Equating the derivative to zero, we find the following equation for

the minimum point:

tanβi = 1 − sinϕi

cosϕi
. (9.3.5)

From here and Eq. (9.3.4), it follows that:

βi = π

4
− ϕi

2
, (9.3.6)

Ri = 2hiτi cot
(π

4
− ϕi

2

)
. (9.3.7)

Summing up the resistance of all N layers, we arrive at the friction resistance, R+
F ,

of the process zone

R+
F =

N∑
i=1

2hiτi cot
(π

4
− ϕi

2

)
+

N∑
i=1

di,i+1τi,i+1. (9.3.8)

Here, τi,i+1 is the limiting shear stress on the boundary between the ith and (i + 1)th
layers, and di,i+1 is the length of the interface slip between the ith and (i + 1)th
layers.

All terms in the second sum are positive; they increase the value of friction resis-
tance. Hence, di,i+1 = 0 for any i, and the absolute minimum with respect to all βi
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where i = 1, 2, . . . , N provides the frontal resistance RF of the process zone in the
non-entrainment mode as follows:

RF = 2
N∑
i=1

hiτi cot
(π

4
− ϕi

2

)
. (9.3.9)

If this value is less than that given by Eq. (9.2.6) for the fracture-entrainment mode,
then shearing entrainment is the more likely entrainment mode.

Therefore, fracture entrainment occurs if and only if,

KE

√
2h < 2

N∑
i=1

hiτi cot
(π

4
− ϕi

2

)
. (9.3.10)

Equation (9.3.10) provides an important estimate for the upper bound of the
entrainment toughness KE characterizing the frontal pressure and frontal resistance
to the avalanche snowpack.

9.4 Estimate of Arresting Capabilities of Entrainment

Let us use Eqs. (9.2.9) and (9.3.10) in order to estimate the arresting capability and
the gravity work in the entrainment processes.

For a simple estimate, we assume that i = 1, h = 1m. Because of great diversity
of snow properties, the cohesion constant τi can vary from 1 kPa to about 100 kPa and
the friction angle ϕi from 10° to 40°. From Eq. (9.3.10), we find that the entrainment
toughness KE can vary from 0.01 to 10 MPa m1/2.

Young’s modulus E of snow can vary from 0.01 GPa to about 1.0 GPa depending
on the snow type and density. Using this range of values of E for snow and the above
estimate of the entrainment toughness KE, we can find that the specific dissipation
energy of entrainment front per unit area according to Eq. (9.2.9) can vary in a very
large range, from 0.01 Jm−2 to about 10MJm−2. Similar to other fracture processes,
the entrainment toughness is the main property to measure the arresting capability
of a snow slope to an avalanche.

Let us compare this value with the work done by gravity per unit area which is
about MgH/A where MgH is the potential energy of gravitation of the avalanche
mass M and A is the total area covered by the moving snow mass. Using the data
from [8], the following estimates are acceptable for avalanches:M varies from 0.01
to 0.1Megaton and A varies from 0.1 to about 1 km2. If we assume that H = 1000m,
then the specific work of avalanches will vary from 0.1MJm−2 to about 10MJm−2.

As seen, under common snow conditions the dissipation energy of entrainment
front is much less than the work done by gravity. Only in the case of a well-
consolidated snow cover, that it is comparable with the gravity work of an avalanche.
A similar result was obtained in [16] for the entrainment of woody debris by
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avalanches. This remarkable property is common for all brittle fractures: some little,
low-energy cracks open door to the large-scale destruction phenomena, like keys do.
This is why fracture mechanics is so important.

9.5 A Model of Frictional Resistance with Entrainment

Let us formulate the model conditions of frictional resistance with entrainment.
A mountain of height H is covered by a layer of snow.
Designate: t is time; x is the vertical axis directed downward so that x = 0

is the top of the mountain and x = H is the bottom of the mountain; y is the
horizontal axis beginning at the top of the mountain under study where y = 0;
and {x = x(s), y = y(s)} is the parametric equation of the curvilinear bed of the
mountain on which the snow is lying, where s is the length of the curvilinear path
along the bed and h(s) is the thickness of the snow layer (Fig. 9.3).

We assume that the bed is rigid and the snow layer is thin so that |h(s)| � H .
Suppose M(t) is the snowpack mass moving downhill under the gravity force along
the curvilinear bed x = x(s), y = y(s). We assume that mass M has the shape of a
parallelepiped with dimensions a×b×c where c is the snowmass thickness normal
to the bed surface, a is the frontal dimension normal to the motion direction, and b
is the depth of the snow mass along its motion path.

Therefore, we have

M = ρabc. (9.5.1)

H

y

x

Snow

Mountain bed

h(x)

Fig. 9.3 Coordinate system of problem under study
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Here, ρ is the snow density in moving mass M.
Due to the entrainment, whenmassM(t)moves down, it absorbs ρ0h∗ads amount

of a new snow for time dt, such that

dM

dt
= ρ0h∗a

ds

dt
. (9.5.2)

Here, ρ0 is the density of the intact snow on the mountain and s(t) is the length of
the avalanche path.

Some snow can also be deposited from the avalanche. The value of h∗ = h∗(s)
in Eq. (9.5.2) therefore represents an effective difference between the snow influx
and snow deposition, usually at the tail of the avalanche [17]. When the avalanche
is well developed, the deposition equals the influx and h∗ = 0.

We assume that

(1) ρ0 is a constant or a known function of s so that ρ0 = ρ0(s).
(2) h(s) is a constant or a known function of s.

Applying Newton’s Law, the equation of motion for massM, taking into account
the entrainment, is:

d

dt

(
M

ds

dt

)
= Mgcosα − R. (9.5.3)

Here, s(t) is the location of mass M on the bed; α is the angle between the x− axis
and the motion direction so that dy = (ds)cosα and dx = (ds)sinα; g = 9.81ms−2;
and R is the resistance force equal to the sum of the friction force plus the frontal
resistance RF caused by the entrainment of the intact snow layer (Fig. 9.4).

Fig. 9.4 An element of the
motion path

dy

dx

ds

n
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For the friction force, we use theVoellmy–Salmmodel [11, 18, 19], which decom-
poses R into dry Coulomb friction and “turbulent” velocity-dependent resistance.

Therefore, we have

R = f
(
Mgsinα + Mkv2

) + ρgacv2/ξ + aRF (v = ds/dt). (9.5.4)

Here, f is the Coulomb coefficient of dry friction on the snow–bed interface, ξ is
the coefficient of “turbulent” friction of the snow flow, k = dα/ds = 1/r is the
curvature of the mountain bed, and r is the radius of curvature.

The term Mkv2 describes the centrifugal force directed along the normal to the
bed, which, depending on the curvature, either increases or decreases the normal
force of interaction between the snow mass and the bed. The “turbulent” friction
term physically represents different velocity-dependent drag forces, for example, air
resistance at the front of the avalanche.According to Eq. (9.2.6), the frontal resistance
RF is equal to KE

√
2h(s) where KE is the entrainment toughness and h = h(s) is

the incumbent snow thickness in the process zone.
The resistance force R substantially depends on the speed ds/dt of the moving

massM (Fig. 9.5). The entrainment toughness KE and therefore the frontal resistance
RF are the greater, the denser and older the snow is. We assume that KE is a constant
depending on geographic and seasonal snow conditions. Also, we assume that a

dt
ds0

R

Fig. 9.5 Resistance force versus speed of moving mass
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is a constant determined by the specific geometry of the track topography. Frontal
resistance may be especially important during the initial stage of avalanche when the
avalanche speed is small.

9.6 Governing Equations

Under these assumptions, from Eqs. (9.2.6) and (9.5.2)–(9.5.4) we get the closed
equation system for s = s(t) and M = M(t) as follows:

dM

dt
= F(s)

ds

dt
, (F = ρ0ah∗); (9.6.1)

d

dt

(
M

ds

dt

)
= M

{
gcosα − f

[
gsinα + k

(
ds

dt

)2
]}

− ρgac
1

ξ

(
ds

dt

)2

− aKE

√
2h(s). (s = 0, ds/dt = 0 when t = 0) (9.6.2)

Here, cosα = dx/ds and sinα = dy/ds are some known functions of s found from
the equation of the mountain bed, and k = dα/ds.

Integrating Eq. (9.6.1) yields

M = M(s) =
s∫

0

F(s) ds + M0 =
s∫

0

ρ0ah∗(s) ds + M0. (9.6.3)

Here, M0 is the initial mass of the release zone. The avalanche mass M is therefore
a function of s that is determined by Eq. (9.6.3).

Let us designate:

G

(
s,

ds

dt

)
= M

{
gcosα − f

[
gsinα + k

(
ds

dt

)2
]}

− ρgac
1

ξ

(
ds

dt

)2

− aKE

√
2h(s). (9.6.4)

Using the functions determined by Eqs. (9.6.3) and (9.6.4), Eq. (9.6.2) can be
written as

d

dt

[
M(s)

ds

dt

]
= G

(
s,

ds

dt

)
. (9.6.5)

It is the governing equation determining the motion of the snowpack with time.
We will apply the following procedure for the numerical treatment of this differ-

ential equation. In a first series of simulations, we solve Eq. (9.6.5) assuming that
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the turbulent friction is neglected and curvature k is zero so that G = G(s). In this
case, we have

v(s) = ds

dt
= 1

M(s)

√√√√√2

s∫

0

M(s)G(s) ds + v2
0M

2
0 , (9.6.6)

t =
∫ s

0

M(s)ds√
2

s∫
0
M(s)G(s) ds + v2

0M
2
0

. (9.6.7)

When the curvature and/or the turbulent friction are taken into account so that

G = G

(
s,

ds

dt

)
, Eq. (9.6.5) can be transformed into the following form:

dF

ds
= 2M(s)G

(
s,

√
F(s)

M(s)

)
, F(s) = [M(s)v(s)]2. (9.6.8)

Initial conditions are s = 0, F = 0, v = ds/dt = 0when t = 0.
Equation (9.6.8) can be integrated numerically and the avalanche speed v = v(s)

can be found as a certain function of s so that

t =
s∫

0

[1/v(s)] ds. (9.6.9)

This equation provides coordinate s of mass M as an implicit function of time.
In the well developed, steady-state regime when h∗ = 0 and d2s/dt2 = 0, the

speed of the avalanche is determined by equation R(v) = Mgcosα where R(v) is
given by Eq. (9.5.4).

9.7 Numerical Simulation

In this section, we present a numerical simulation of theVallée de la Sionne avalanche
event of February 7, 2003 [19]. For this purpose, Eq. (9.6.5) is solved taking into
account both dry and turbulent friction, bed curvature, and the frontal entrainment
ignored by other models such as the Voellmy–Salm model.

The data for this event are reported in [8]. We summarize the data required for
the numerical simulation using the following information:

a. The release mass is 11.15 × 106 kg, and the deposit mass is 17.16 × 106 kg.
b. Density 200 kgm−3.
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c. Coulomb friction is taken f = 0.26 [15].
d. The slope angle and avalanche width are approximated as a function of the path

length from the data given in [8].
e. In accordance with the entrainment data in [8], the entrainment depth h∗ that is

the effective difference between snow influx and snow deposition, was assumed
to be constant at the beginning of the avalanche up to 800 m of the path length,
then decrease linearly to zero between 800 and 1000 m of the path length, remain
zero between 1000 and 1600 m of the path length, and due to flank entrainment
regains the original constant after 1600 m of the path length.

f. The ratioρgac/ξ in the turbulent resistance termwas assumed to remain constant.
The value of ξ = 800ms−2 was used here and taken from [20].

g. The frontal resistance RF was assumed to remain constant RF = 0.1Mpam.
h. The curvature of the mountain bed was determined from the slope angle curve

given in [8]. This value was approximated and used over sections of the path
length.

The result of the simulation using Eq. (9.6.5) based on the above assumptions is
shown in Fig. 9.6. As seen, this simulation model is well confirmed by the practical
measurement data reported by Sovilla et al. [8].
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Fig. 9.6 Velocity simulation of the Vallée de la Sionne avalanche event of February 7, 2003, using
the data found in Sovilla et al. [8]. The analytical results are compared with the observed data
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9.8 Maximum Acceleration of Avalanches—The WTC
Collapse

It is useful to get a simple estimate of the avalanche acceleration. Let us assume
that α = const so that the mountain bed is represented by a straight linear slope
(Fig. 9.7), and let us ignore the frontal and “turbulent” resistance. Also, we assume
that M0 = 0, v0 = 0 that is initial mass and speed of avalanche are zero. Besides,
we assume that aρ0h∗ = F = const.

In this case, we can get from Eqs. (9.6.1) and (9.6.2) that

M = Fs, s = g

6
(cosα − f sinα)t2. (9.8.1)

And so, the acceleration aA of the avalanche cannot exceed

aA = g

3
(cosα − f sinα). (9.8.2)

It will be a bit less if the frontal and “turbulent” resistance forces are taken into
account.

For example, when α = 450 and f = 0.26 the maximum possible acceleration
of the snow avalanche is equal to aA = 0.17 g, which is about five times less than
the acceleration of the collapse of the World Trade Center towers in New York on
September 11, 2001 [1], that occurred in the regime close to free fall.

Mechanics of theWTC collapse [1, 3–5]. The progressive failure of skyscrapers
and towers occurs in the fastest avalanche-type mode similar to snow avalanches.
However, it is much slower than free fall that happens after a tower is destructed by
explosives, for example, in a demolition procedure.

Fig. 9.7 Simplest slope
scheme

x
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For the purpose of comparison, let us consider a different regime of fracturing,
namely the progressive failure of a tower of heightH. Let x be the vertical coordinate
directed down so that the top of the tower corresponds to x = 0 and the ground floor
to x = H . Designate by m = m(x) the mass of the building per unit of height.

SupposeM(t) is themass of the upper structure thatmoves down under the gravity
force, and H − x(t) is the height of the underlying structure intact at the moment t (t
is time). Mass M(t) increases with time because it absorbs the underlying structure
so that

dM

dt
= m

dx

dt
. (9.8.3)

The motion equation of massM is

d

dt

(
M

dx

dt

)
= Mg − R. (9.8.4)

Here, R is the force of the resistance of the underlying, intact structure to the motion
of the upper mass M falling down. The system of Eqs. (9.8.3) and (9.8.4) describes
the regime of progressive failure [1].

Let us estimate the minimum possible time of the progressive failure, which
corresponds to the destruction of no resistance when R = 0. We get

dM

dt
= m

dx

dt
,

d

dt

(
M

dx

dt

)
= Mg. (9.8.5)

This equation system describes the fastest regime of progressive failure.
Let us show that it is still much slower than the free fall caused by the demolition

process using explosives. The time tD of the free fall of the demolition of a building
of height H is equal to

tD = √
2H/g. (9.8.6)

TheWorldTradeCenterwas about 417mhigh.Hence, it would take about 9.3 s for
its free fall, if it would be caused by the explosives destructing the whole building at
the very beginning. In practice, the demolition time is about 10–20% higher because
explosives are usually placed mostly in the foundation, and not uniformly in the
whole building as it is assumed by Eq. (9.8.6).

In fact, the time of the WTC collapse on September 11, 2001, was about 12 s,
which practically coincides with the time of common demolitions by explosives.
Meanwhile, the progressive failure caused by a local fracturing would take much
more time. We prove that using, for a comparison, the fastest regime of progressive
failure, Eq. (9.8.5), starting from the top of the WTC building so that:

x = 0,
dx

dt
= 0, M = 0 when t = 0. (9.8.7)
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Let us indicate some exact solutions of Eqs. (9.8.5) and (9.8.7); for more detail
on some solutions and analysis, see [1, 3–5].

(1) Suppose the mass of the building is distributed uniformly so thatm is a constant.
In this case, we get

x = 1

6
gt2, M = 1

6
mgt2, TF = √

3 tD. (9.8.8)

In this mode, the acceleration of the moving mass M is equal to g/3, one third
of the gravitational acceleration of free fall. The collapse would take time TF
which is

√
3 times the free-fall time.

(2) Suppose the mass of the building is distributed linearly like a pyramid so that
m = ax where a is a constant. In this case, we get

x = 1

10
gt2, M = 1

200
ag2t4, TF = √

5 tD. (9.8.9)

In thismode, the acceleration of themovingmass is equal to g/5 and the collapse
would take

√
5 times the free-fall time.

These results prove that the collapse in the regime of progressive failure is much
slower than the free fall even if we ignore the resistance of the underlying intact
structure. The comprehensive data of NIST evidence the free-fall regime of the
WTC collapses on September 11, 2001, which means that the WTC towers were
disintegrated at the very beginning of the collapse. Progressive failure describes
avalanche-type phenomena similar to the much slower snow avalanches.

Summary. Based on this entrainment model, the energy balance in the process
zone was studied using the invariant integral of fracture mechanics, and the frontal
resistance and critical snow pressure were calculated.We introduced the entrainment
toughness KE as a basic property characterizing the frontal resistance of the process
zone and the frontal pressure in the avalanche. Some estimates of the entrainment
toughness were derived from the physical properties of snow and from avalanche
data [8]. The entrainment model presented here can be implemented in simulation
tools. The governing equations of the dynamics of avalanches were derived in the
simplest approximation taking into account entrainment, inertia, gravitation, and
Voellmy–Salm friction.
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Chapter 10
Relativistic Electron Beams

Abstract In this chapter, the invariant integral of electrodynamics is used to derive
the interaction force of electric charges moving at superluminal velocities (super-
luminal electrons discovered by Cherenkov found many applications). As a result,
Coulomb’s Law for static electric charges is generalized; now, it depends also on
the speed of charges. According to the new law, superluminal electrons attract one
another. The beams of superluminal electrons form superdense clusters can easily
penetrate and destroy any solids. Therefore, relativistic electron beams will be the
main weapon of future star wars in cosmos. This chapter may be of special interest
for military scientists.

Just a matter of scientific curiosity today, relativistic electron beams will be the main
weapon of star wars in the future. A special interest causes the superluminal electron
beams discovered and studied by Russian scientist P. A. Cherenkov still in 1934.
As distinct from slow electrons obeying the classic Coulomb’s Law, superluminal
electrons attract one another, with getting packed into dense clusters that can easily
cut any solid, seeG. P. Cherepanov and A. A. Borzykh, Theory of the electron fracture
mode in solids, J. Appl. Physics, 74(12), 1993.

The new law says that the interaction force F of two electric charges q1 and q2
moving along the same straight line at speed V is equal to

F = q1q2
εR2

V 2

a2
− 1

1 − V 2

c2

. (10.01)

Here R is the distance between the charges in the proper coordinate frame, c is the
speed of light in vacuum, a is the speed of light in a medium, and ε is the dielectric
constant that shows how much the interaction force in the medium is less than in
vacuum (a ≤ c, ε ≥ 1 and ε = 1 in vacuum ). The force of attraction is assumed to
be positive and the force of repulsion negative. E. M. Lifschitz called this equation
the Coulomb–Borzykh–Cherepanov law; therefore, we call it the CBC law, in short.

Equation (10.01) is valid for both charges when V < a < c, that is, when the
speed is subluminal. However, for superluminal charges when a < V < c, that is,
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when the speed of charges exceeds the speed of light in the medium, the force F acts
only upon the rear charge; in this case, this force becomes attractive for charges of
one and same sign. Particularly, the CBC law allows one to understand and predict
unusual fracturing capabilities of relativistic electron beams that can create cuts like
brittle fractures even in soft biological tissues.

For slowly moving charges, when V � a, Eq. (10.01) provides the classic
Coulomb’s Law

F = −q1q2
εR2

. (10.02)

Below, we derive the CBC law and some of its implications using invariant inte-
grals of electrodynamics. For more detail on electron mode fracturing, the reader
refers to the above-mentioned paper in J. Applied Physics.

10.1 Introduction

In the mid-1960s, high-power pulse electron-beam accelerators having a voltage of
some millions of volts were invented and later used to fracture various materials.
In 1980, the CBC law was discovered that was applied to collective relativistic
interactions in beams of superluminal electrons [1, 2]. A new, electron fracture mode
was introduced when caused by the formation of dense clusters of superluminal
electronbeams that act as blades orwedges producing crack-like cuts in anymaterials.

The electron fracture mode is characterized by the following unusual features [2]:

(i) Initial macrocracks do not affect the threshold of fracture;
(ii) Fracture of all, even liquid materials occurs in an absolutely brittle way; and
(iii) The splitting cracks propagate with supersonic velocities.

All these and other peculiarities of electron fracturing mode were explained and
described using invariant integrals and the new, CBC law of electron interaction, see
[2, 3] for more detail.

In Sect. 10.2 below,we provide the invariant�-integrals for electromagnetic fields
in dielectrics, and in Sect. 10.3, the field equations of a moving charge.

Then, in Sect. 10.4, we derive the new, CBC law of interaction ofmoving relativis-
tic charges, generalizing Coulomb’s Law, and apply it to the chain of superluminal
electrons in Sect. 10.5.

10.2 Invariant Integrals of Electromagnetic Field

The state of electromagnetic field in dielectrics is characterized by field vectors E
and D, and H and B which satisfy the following Maxwell’s equations (in SI units):
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γi jk E j,k + ∂Bi

∂t
= 0, γi jk Hj,k − ∂Di

∂t
= Ji , (10.2.1)

Di,i = δ, Bi,i = 0, Ji,i + ∂δ

∂t
= 0. (10.2.2)

Here, Ji is the current density vector component, δ is the charge density, t is time,
and γ123 = γ231 = γ312 = 1, γ132 = γ321 = γ213 = −1, all other γi jk being equal to
0 where i, j, k = 1, 2, 3.

In a dielectric medium where δ = 0 and Ji = 0, and the electromagnetic
field is stationary or steady in a moving coordinate frame, Maxwell’s equations
in Eqs. (10.2.1) and (10.2.2) acquire the following shape

E j,k = Ek, j , Hj,k = Hk, j , Di,i = 0, Bi,i = 0. (10.2.3)

The invariant �-integrals of this electromagnetic field used in the moving coordi-
nate frame with respect to which the physical field is steady can be written as follows
[1–3]:

�i =
∫∫
©
S

[(
Dj Ei + Bj Hi

)
n j − 1

2

(
E j D j + Hj Bj

)
ni

]
dS as i , j = 1, 2, 3.

(10.2.4)

In the case of superluminal velocities of a charge, the perturbation domain repre-
sents a moving cone, with the charge being at the apex of the cone.

In Sect. 1.6, Maxwell’s equations were derived from the invariant �-integrals for
arbitrary nonlinear dielectric and diamagneticmedia. In the case of linear constitutive
equations for isotropic homogeneous matter when

Di = ε0εEi and Bi = μ0μHi (in the SI units), (10.2.5)

the proof is quite simple.
Suppose there are no charges and currents in any volume V inside surface S. In

this case, �i = 0 and the application of the divergence theorem to the integral in
Eq. (10.2.4) provides

∫

V

[
Dj, j Ei + Bj, j Hi + ε0εE j

(
Ei, j − E j,i

) + μ0μHj
(
Hi, j − Hj,i

)]
dV = 0.

(10.2.6)

From here, it follows that Maxwell’s equations, Eq. (10.2.3), are valid in V since
Ei and Hi are arbitrary.
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10.3 Field Equations of a Moving Charge

For the study of collective interactions, let us use the known solution of the Maxwell
equations for the proper field of a charge moving at constant velocity V which is
greater than the phase speed of light in medium a (but less than the speed of light
in vacuum c). According to the Lorentz transformations, the asymptotic steady-state
field of a superluminal negative charge e moving along the x3-axis in the proper
space–time frame of coordinates, is [1, 4]:

Ei = eM2xi
2πε′

(
x23 − M2r2

)−3/2
where i = 1, 2; (10.3.1)

E3 = −eM2x3
2πε′

(
x23 − M2r2

)−3/2; (10.3.2)

H1 = Ax2, H2 = −Ax1, H3 = 0. (10.3.3)

Here,

A =
μ′eV M2

(
1 − a2

c2

)

2π

(
1 − V 2

c2

) (
x23 − M2r2

)−3/2
. (10.3.4)

M2 =
(
V 2/a2

) − 1

1 − (
V 2/c2

) = μεV 2 − c2

c2 − V 2
> 0, (V > a) (10.3.5)

a = c√
με

, μ′ = μμ0, ε′ = εε0, r2 = x21 + x22 (10.3.6)

(
c = 1/

√
ε0μ0 = 3 × 108 m/s in the SI units

)

Here, E1, E2, E3, H1, H2 and H3 are the electromagnetic field components in the
x1x2x3-system of coordinates, and M is the relativistic Mach number (ε′ = εε0 and
μ′ = μμ0 are the absolute dielectric and magnetic permeabilities of the medium).

The field described by Eqs. (10.3.1)–(10.3.6) is defined inside the Mach cone,
that is, in the region x23 > M2r2, x3 < 0. Outside this cone, the field of the charge e
vanishes.

Solution of Maxwell’s equations. Linear Maxwell’s equations, Eqs. (10.2.1),
(10.2.2), and (10.2.5), have the analytical solution for any number of point charges
arbitrarily moving in the infinite space of the medium. Due to the principle of super-
position, it is sufficient to find this solution for a single point charge. To this aim, the
scalar ϕ and vector P potentials are introduced as follows:

B = rot P, E = −gradϕ − ∂P/∂t (in the SI units) (10.3.7)
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Using these potentials, Maxwell’s equations, Eqs. (10.2.1), (10.2.2) and (10.2.5),
are reduced to the following system of wave equations


ϕ − 1

a2
∂2ϕ

∂t2
= − δ

ε′ , (10.3.8)


P − με

c2
∂2P
∂t2

= −μ′j,
(
a2 = c2

με

)
(10.3.9)

if the Lorentz’ condition equation is satisfied

divP + με

c2
∂ϕ

∂t
= 0. (10.3.10)

Here, 
 is Laplace’s operator.
For arbitrarily distributed charges and currents in the volume V1 of the infinite

space, the solution ofwave equations, Eqs. (10.3.8) and (10.3.9), iswritten as follows:

ϕ(x, y, z t) = 1

4πε′

∫

V1

1

r
δ
(
x1, y1, z1, t − r

a

)
dV1, (10.3.11)

P(x, y, z, t) = μ′

4π

∫

V1

1

r
j
(
x1, y1, z1, t − r

a

)
dV1. (10.3.12)

Here:

r2 = (x − x1)
2 + (y − y1)

2 + (z − z1)
2, j = j

(
jx , jy, jz

)
(10.3.13)

Let us consider a particular case of this problem when a point charge e (electron)
moves along the z-axis at the constant speed V which is greater than the speed of
light in this medium so that

a = c√
εμ

< V < c. (10.3.14)

In this case, the integrand functions in Eqs. (10.3.11) and (10.3.12) can be written
in terms of the Dirac delta function as follows:

δ = eδ(x1)δ(y1)δ(z1 − V t), (10.3.15)

jx = jy = 0, jz = eV δ(x1)δ(y1)δ(z1 − V t) (10.3.16)

Substituting these values into Eqs. (10.3.8) and (10.3.9) provides:
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Px = Py = 0, Pz = ε
V

c
ϕ. (10.3.17)

Equation (10.3.10) becomes

∂Pz
∂z

+ με

c2
∂ϕ

∂t
= 0. (10.3.18)

Using Eqs. (10.2.5), (10.3.7), (10.3.17), and (10.3.18), we can determine all
components of this electromagnetic field in terms of potential ϕ which, based on
Eqs. (10.3.11) and (10.3.15), can be written as follows:

ϕ = e

2πε′
(
x23 − M2r2

)−1/2
as x3 < Mr, (10.3.19)

ϕ = 0 as x3 < Mr, (10.3.20)

where

x3 = z − V t, r2 = x21 + x22 . (10.3.21)

Here, Ox1x2x3 is the proper coordinate frame of the moving electron taking into
account the relativistic contraction of the space. In this frame, the electromagnetic
field is steady state, and this electron is at the coordinate origin.

10.4 Generalized Coulomb’s Law (the CBC Law)

In a dielectric material, let us consider an individual electron with negative charge
e which moves at a constant superluminal velocity V in a homodeneous, external
electromagnetic field

E10 = E20 = 0, E30 �= 0, H10 = H20 = H30 = 0. (10.4.1)

The proper singular field Es and Hs of this electron is determined by
Eqs. (10.3.1)–(10.3.6).

According to the principle of superposition based on the linearity of Maxwell’s
equations, the complete electromagnetic field near the individual electron is

E = E0 + Es, H = H0 (10.4.2)

Here, the components of E0 and H0 are given by Eq. (10.4.1).
Let us calculate the force F3 acting upon the moving charge e from the external

field of Eq. (10.4.1). Let us represent this charge as a limit e = lim(q
) when
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q → ∞, 
 → 0whereq is the linear density of charge distributed along the segment
0 > x3 > −
 of length 
 along the x3-axis. This field is evidently axisymmetrical.

Let us consider the surface S = St + Sc where St is the butt end of the cylinder
x21 + x22 < δ2 at x3 = −
, and Sc is the surface of the cylinder x21 + x22 = δ2 when
0 > x3 > −
 and δ � 
 so that lim(δ/
) = 0 when δ → 0,
 → 0. The force
acting upon the charge is equal to the �-integral �3 in Eq. (10.2.4) over the closed
integration surface S. This force is directed along the x3-axis.

Based on Eqs. (10.3.1)–(10.3.6), the field of H is ignorably small inside S, and
the axisymmetrical field of E and D in the dielectric inside S is determined by the
following potential

ϕ = q

2πε′ ln r where r2 = x21 + x22 . (10.4.3)

As a reminder, the field is stationary or steady state in the proper coordinate
system, and it does not depend on x3 inside S since q does not depend on x3.

Taking account of the axial symmetry and the rule of �-integration, the �-integral
�3 in Eq. (10.2.4) is reduced to the following one

�3 =
∫

Sc

E3DrdS =
∫

Sc

E30D
s
rdS = 2πδ

0∫

−


E30D
s
rdx3. (10.4.4)

Here, it was taken into account that the integral over the butt end St of the cylinder
tends to zero when δ/
 → 0, and that the normal components are equal to n3 =
0, nr = 1 on Sc while the external field D0

r does not contribute to �3.
According to Eq. (10.4.3), the field in the dielectric inside S is:

Ds
r = ε′Es

r = ε′ ∂ϕ

∂r
= q

2πr
. (10.4.5)

Substituting Ds
r in Eq. (10.4.4) by Eq. (10.4.5) provides

�3 = eE30 (10.4.6)

because q
 → e when q → ∞,
 → 0.
Equation (10.4.6) coincides with the corresponding equation in the case of an

electron or a charge at rest. Up to a constant coefficient, it follows also from the
dimensional analysis. Evidently, it is valid for any electric charge.

Let two charges q1 and q2 move along one and same straight line, with having
the superluminal speed V so that c > V > a. The rear charge q2 is in the Mach
cone of the frontal charge q1. Hence, the rear charge is acted upon by the force q1E30

along their common axis where E30 is the field created by the frontal charge q1 at
the place of the rear charge q2. The latter value of E30 is given by Eq. (10.3.2) at
r = 0, x3 = −R so that the force acting upon the rear charge is equal to
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�3 = q1q2M2

εR2
= q1q2

εR2

V 2

a2
− 1

1 − V 2

c2

.
(
ε = 2πε′) (10.4.7)

Here, R is the distance between the moving charges.
And so, the charge moving in the wake of a frontal like charge at the superluminal

speed is acted upon by the force of attraction determined by Eq. (10.4.7). This
equation is Coulomb’s Law generalized for relativistic velocities (the CBC law).

10.5 Self-compression of a Chain of Superluminal Electrons

Let us consider the behavior of a one-dimensional, semi-infinite chain of superlu-
minal electrons equidistantly separated by the interval b at the initial instant. In this
case, forces exist directed only along the axis of the chain.We denote the force acting
on the mth electron and due to the nth electron by fmn(n < m) so that the resultant
force acting on the mth electron is

Fm =
m−1∑
n=0

fmn. (10.5.1)

According to Eqs. (10.4.7) and (10.5.1), at the initial instant, we obtain

Fm(b) = e2M2

2πε′b2

m−1∑
n=0

(n + 1)−2. (10.5.2)

As is known,

1 <

m−1∑
n=0

(n + 1)−2 < π2/6. (10.5.3)

Hence,

F1(b) < Fm(b) <
π2

6
F1(b). (10.5.4)

From Eq. (10.5.4), it follows that for any m, the forces Fm(b) differ little from
F1(b). Therefore, we can obtain a simple estimate of the deformation of a chain
system by considering the motion of s single electron e1 in the field produced by e0.

Taking Eq. (10.4.7) into account, the relativistic equation of motion of electron
e1 in the moving coordinate system has the form [1, 2]
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d2z

dt2
=

e2
(
V 2

a2
− 1

)

2πε′m0

(
1 − V 2

c2

)
z2

[
1 − 1

c2

(
dz

dt

)2
]3/2

. (10.5.5)

Let us limit ourselves to the case of small relative particle velocitieswhen dz/dt �
c in Eq. (10.5.5). Let us solve Eq. (10.5.5) in this case using the following initial
conditions

z = −b and
dz

dt
= 0 at t = 0. (10.5.6)

The resulted solution is given by the following equation

t K 1/2 = b1/2(−z)1/2(z + b)1/2 + b3/2arcsin
(
1 + z

b

)1/2
(10.5.7)

where

K =
e2

(
V 2

c2
− ε−1

)

πε0m0

(
1 − V 2

c2

)
(
a2 = c2

με
,μ = 1 for dielectrics

)
(10.5.8)

Let us estimate the time τ that is necessary for e1 to approach e0 for a very short
distance. In this way, a dense system of two electrons is formed; quantum effects are
essential in this dense system, just as in a solid.

Substituting z = 0 into the solution, Eq. (10.5.7), we obtain the time τ for joining
two electrons

τ = πb3/2

2K 1/2
. (10.5.9)

We note that quantities b, t and τ are considered in the coordinate system fixed
at the first electron. Using the Lorentz transformation and the laboratory frame,

b′ = b

(
1 − V 2

c2

)1/2

, t ′ = t

(
1 − V 2

c2

)−1/2

, (10.5.10)

we obtain from Eq. (10.5.9)

(
τ ′)2 = π3ε0m0

(
b′)3

4e2
(
1 − V 2

c2

)3/2(
V 2

c2
− ε−1

) . (10.5.11)
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The dependence of τ ′ on V 2/c2 for a dielectric material is also shown in [1, 2].
As we can see, the distance between the two electrons contracts most substantially
in a narrow region of energies (velocities) of the particles, where τ ′ is small. For
V 2/c2 = (3 + 2ε)/(5ε), the time of condensation τ ′ takes the minimum value τ ′

min

τ ′
min = cm

(
b′)3/2

(
1 − ε−1

)5/4 (10.5.12)

where

cm =
(
π55/4

)3/2
ε
1/2
0 m1/2

0

123/4e
. (10.5.13)

For an electron, we have

cm = 6.437 × 10−2 m−3/2s

Hence, a chain of superluminal electrons condenses in a solid-like state during a
time span τ ′ defined by Eq. (10.5.11). For instance, for b′ = 1μm (the order of the
distance between electrons in pulsed electron beams), we obtain τ ′

min = 10−10 s.
Thismeans that electron plasma clusters form at a depth on the order of 1mmbeneath
the surface of an irradiated material.

For the estimate of fracturingproperties of superluminal electronbeams, the reader
is referred to the detailed paper [1].
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Chapter 11
Cosmology

Abstract Cosmology is the philosophy and astronomy of the universe. In this
chapter, cosmology is built on the invariant integral describing the law of energy
conservation for the masses which are capable of experiencing not only Newto-
nian attraction, but also repulsion which appeared to be proportional to the distance
between two masses. The present approach denies the general relativity. The evo-
lution equation of the universe was solved using the data collected by WMAP and
Planck missions. The solution provided the asymptotic description of the Big Bang,
the history of the early decelerating universe, the expansion at a constant rate in the
middle age, and the current stage of the accelerated expansion. The calculated age
of the universe appeared to be close to that determined by the FLRW and �CDM
models based on the general relativity. The critical masses of neutron stars and Black
Holes, orbital velocities of stars in galaxies, and other important values of the uni-
verse were calculated; the results are very close to that observed by astrophysicists.
The new model of the revolving universe provided a simple explanation of the Dark
Energy, the most mystic concept of the former cosmology. The cosmological con-
stant is defined in terms of the angular velocity of the universe which is shown to be
a rotating, expanding, prolate spheroid of constant eccentricity. This chapter is for
everybody because everybody has some interest in cosmology and metaphysics of
nature.

Contrary to the common approach of the general relativity, this chapter uses the
invariant integral of cosmology to model and study the universe at the large scale of
about 100MPc in the Euclidian space. The flatness of the universe proven by numer-
ous probes of the WMAP and Planck satellite missions necessitates this approach.
From the invariant integral of cosmology, the interaction force of two point masses
in the cosmic gravitational field is derived. This force is proven to be a sum of two
terms, one being the Newtonian gravity and the other the repulsion force caused by
the cosmological constant. Both terms make up the right-hand part of the evolution
equation of the dynamic universe.

Qualitatively in agreement with the FLRW and ΛCDM models, and with the
WMAP and Planck mission data, the exact solution of this equation has provided the
history of the early decelerating universe and the asymptotic description of the Big
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Bang, the expansion at an almost constant rate in themiddle age, and the current stage
of the accelerated expansion of the universe. The age of the universe is found to be
equal to 12.3 billion years. It is shown that neutron stars become stable Black Holes
when their masses are greater than 6.7 M�. Then, it is assumed that the universe
not only expands but also revolves, and the evolution equations of the revolving and
expanding universe are advanced, with the cosmological constant being defined in
terms of the angular velocity of the universe. A singular solution of these evolution
equations has described the history of the revolving and expanding universe.

Orbital velocities of stars in the Milky Way and similar galaxies are calculated
to be about 250 km/s independent of the distance of stars from the galaxy center.
Using the equation of the fractal dimension of the universe as a power-law fractal, the
thickness of a disk-shaped universe is found. The graviton of minimum frequency
is hypothesized to be the smallest elementary particle and the building block of
everything. The shape of spheroidal universe and the super-photon hypothesis of the
universe origin are analyzed.

The chapter is based on this author’s papers The Large-scale Universe: the Past,
the Present and the Future published in Journal of Phys. Mesomechanics, 20(1),
2017, and A Neoclassic Approach to Cosmology Based on the Invariant Integral
published in Horizons in World Physics, vol. 288, Nova, New York, 2017.

11.1 Introduction

Cosmology is a speculative science/philosophy about the universe/cosmos based on
astrophysical observations and human imagination. It feeds the curiosity of human
beings in quest of their place in the world and fate in the future. Sometimes, they
hoped to find the answers in what could be seen in the sky. The chain of events there
appeared more persistent than anything on the Earth, “eternal,” which made them
use the heaven for worshiping as well as for measuring the time and coordinates on
the Earth.

Still the ancient Egyptians could see with the naked eye in the sky what Aris-
totle (388–323BC), an ancient Greek polymath and a disciple of Plato, set forth
later in his treatise On the Heaven. He viewed the Earth as the center of the Cos-
mos, with Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn, and stars being at an
ever-increasing distance from it—everything enclosed by a prime solid sky. In his
masterpiece The Sand Reckoner, Archimedes (287–212BC), another Greek genius,
calculated the total number of indivisible grains in the universe to be about 1064

in modern designation. Amazingly, this figure coincides with the current estimate
of the mass of the universe about 1056g, if we assume the mass of one grain to be
equal about 10−9g!Archimedes possessed some knowledge of calculus two thousand
years before Leibnitz (1646–1716), a German polymath, and Newton (1642–1727),
a British genius.

It was almost two thousand years ago that Ptolemy (100–170AD), an ancient
Greek–Roman astronomer, created the astronomical tables and geographical maps
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used during the next 1500 years throughout the world. With his famous treatise
Elements, Euclid (circa 320–260BC), an ancient Greek mathematician and one of
“the giants on which shoulders Newton stood,” created the geometry unshakeable
for more than two thousand years until Riemann (1826–1866), a German genius, and
Lobachevski (1792–1856), a Russian mathematician, advanced the non-Euclidian
geometry.

The ancient Greek community, less in number than today’s Luxembourg, for a
short time brought up Pythagoras, Socrates, Plato, Aristotle, Archimedes, Euclid,
Ptolemy, and a dozen of other brilliant brains that eclipsed the achievements of all
great minds of the last four centuries bred in the pool which is 104 larger than the
ancientGreece.The ancientGreek theory about the geocentricAristotelian/Ptolemaic
cosmology reigned in theworld during two thousand years andwas only destroyed by
the self-sacrificing deeds of Copernicus (1473–1543), a German astronomer, Bruno
(1568–1600), an Italian hero, and Galileo (1564–1642), an Italian great. Meanwhile,
still Archimedes recognized the heliocentric system called now the Copernican one.
Today, we see that bitter controversy only as the difference of opinion concerning a
convenient origin of the frame of reference so that both Aristotle and Copernicus are
right. (Everywhere in this chapter, the national identification of a person corresponds
to the state of his birth.)

In 1907,Minkowski (1864–1909), aRussianmathematician andEinstein’s teacher,
coined the term space–time and suggested the following Minkowski metric of the
flat space–time [1]

ds2 = −c2dt2 + dx2 + dy2 + dz2 (11.1.1)

Here, c is the speed of light in vacuum; t is time; and x, y, and z are the Cartesian
coordinates. In mathematical terms, this metric characterizes the special relativity
theory earlier advanced by Lorentz (1853–1928) and Einstein (1879–1955), German
physicists, and by Poincare (1854–1912), a French mathematician.

Declaring c to be an absolute constant, Einstein advanced the following dualisms
of mass–energy and space–time as the physical properties of everything

E = Mc2, L = cT . (11.1.2)

Here, E, M, L , and T are the energy, mass, length, and time. These dualisms have
since revolutionized the science/philosophy of humankind.

In 1916, Einstein generalized the Minkowski metric and advanced the general
relativity theory of the curved space–time in order to describe the Newtonian gravity
as a geometrical property of the curved space–time, with a greater curvature being
caused by a denser matter. He derived the following Einstein equations [2]

Gαβ = 8πG

c4
Tαβ (11.1.3)
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(
Gαβ = Rαβ − 1

2
Rgαβ; Rαβ = Rμ

αμβ; α, β, μ = 1, 2, 3, 4

)

Here, G is the gravitational constant; Tαβ is the energy–momentum tensor of mat-
ter; x1, x2, x3, and x4 are the redesignated t, x, y, and z; gαβ is the covariant metric
tensor of the space–time ds2 = gαβdxαdxβ ; Gαβ is the Einstein tensor; Rαβ is the
Ricci curvature tensor; R = Rα

α is theRicci scalar; and Rμ
αμβ is theRiemann curvature

tensor of the space–time.
In 1922, Friedmann (1880–1926), a Russian mathematician, applied the gen-

eral relativity to the homogeneous and isotropic universe and derived the following
Friedmann equations [3]

(
ȧ

a

)2

= 8π

3
Gρ − k

c2

a2
,

ä

a
= −4π

3
G

(
ρ + 3

p

c2

)
(11.1.4)

Here, a = a(t) is the scale factor of space–time; t is time; ρ is the mass density
of the universe; p is the pressure defined by a cosmological model chosen; and k, the
normalized curvature index of the universe (k = 0 for the flat universe, k = 1 for
the sphere, and k = −1 for the hyperboloid).

Although Einstein was a referee of the Friedmann paper, he failed to appreciate its
value for cosmology. Equation (11.1.4)was latermodified and called theFLRW equa-
tions after Friedmann and also after Lemaitre (1894–1966), a Belgian astronomer,
Robertson (1903–1961), an American physicist, and Walker (1909–2001), a British
mathematician. TheFLRW equations have been also used in theΛCDMmodel called
the standard cosmological model which is mostly recognized today.

From the second Friedmann equation, it follows that for positive p the universe
contracts, which corresponds to the original view of Einstein. However, later Hubble
(1889–1953), an American astronomer, measured the value of the following Hubble
parameter [4]

H = ȧ/a. (11.1.5)

He proved that this parameter was a positive constant (the Hubble law) so that the
universe appeared to be expanding at a constant rate. The further studies supported
this law, but corrected the value of the constant obtained by Hubble.

During the next 50 years, Einstein and other theoreticians tried to modify the
general relativity and the Friedmann equations in order to match the theory to the
numerous astronomical discoveries of many new galaxies, quasars, pulsars, Black
Holes, Dark Matter, supernovae, and so forth. Then, as a result of the long-term
WMAP satellite mission, the curvature of the universe was proven to be equal to zero
with only 0.4% margin of error. Moreover, in the past when the universe was much
denser, the curvature of the universe was much closer to zero contrary to the general
relativity, according to which the denser matter made the curvature of the space–time
greater.
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And so, the universe is, and was at any time, flat so that the general relativity
is wrong because it is built on the wrong assumption of a non-flat universe. In
the literature, this controversy is politely called the flatness problem of the general
relativity. In an attempt to save the general relativity, even a new fantastic inflation
theory was made up.

In the course of the Supernova Cosmology Project and the WMAP and Planck
satellite missions, it was also established that in the cosmos, beyond the gravity, some
tensile forces of an unclear nature provide the observed acceleration of the expansion
of the universe. These forces were called the Dark Energy. This discovery as well
contradicts to the general relativity. Many other particular facts, for example, the
almost constant orbital velocity of stars in spiral galaxies, have been unexplainable
by the general relativity.

In the present chapter, we will, in main, revive the Aristotelian/Ptolemaic view of
the cosmos and study the large-scale universe using the invariant integral of cosmol-
ogy introduced by this author. Our intention is, in particular, to explain and make
clear the basic astronomical phenomena recently discovered but not understood in
the framework of the general relativity such as the Dark Energy, the Dark Matter,
the Black Hole, and others. For short, we will call this new approach the NEOC (the
Neoclassic Cosmology).

11.2 Basic Assumptions: The Large-Scale Universe

Atfirst,weneed to evaluate the reasonable timehorizondeterminedbynatural biolog-
ical limits of the human race lifetime. Homo Sapience appeared forty thousand years
ago and its civilization culminated in the epoch of the ancient Egypt and Greece,
when the major part of the life’s important knowledge we use today was created.
Since then, in the struggle for survival on this small planet, the Homo Sapience has
been degenerating at an ever-increasing rate. This struggle makes them create more
and more sophisticated weapons sufficient to annihilate themselves, altogether. Cul-
ture of humanism, life support, and unselective self-reproduction as well contribute
genetically to this process of degeneration.

Today’s world population is ten thousand times larger in number than the ancient
Greece population. However, for the last three to four centuries who can be on a
par with Pythagoras, Socrates, Plato, Aristotle, Archimedes, Euclid, and Ptolemy?
Nobody can. Obviously, the Homo Sapience time horizon for the future being is less
than about ten thousand years. Therefore, any cosmological theory beyond this time
limit of the future man existence has neither sense nor meaning. Certainly, a theory
looking forward beyond this time may entertain, but not more than that, because it
cannot ever be proven or refuted by human beings.

However, to make sure we assume that the time horizon of the human race is
about ten million years. For ten million years, light will have covered the distance
which is much less than 100 MPc (the latter is less than about 1/300 of the diameter
of the universe). Based on the astrophysical data, at the scale of 100MPc the current
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universe can be considered homogeneous and isotropic. In the NEOC approach, at
any time the distance of about 1/300 of the universe diameter, or its time equivalent,
will be called the epoch. It is the large scale we accept in this chapter to treat the
universe as homogeneous and isotropic at any time. This scale will play the role
of an elementary cell resembling similar notions of elementary cells in continuum
physics.

Based on the WMAP and Planck missions data, within less than 0.4% margin of
error, the universe is proven to be flat in the previous and current epochs so that its
FLRW metric in the spherical coordinates is reduced to the following Minkowski
metric in the Cartesian coordinates

ds2 = −c2dt2 + a(t)2
(
dr2 + r2dθ2 + r2sin2θdϕ2

)
= −c2dt2 + dx2 + dy2 + dz2 (11.2.1)

At the scale of 
x ∼ 
y ∼ 
z ∼ 100MPc and 
t ∼ 107 years, the Minkowski
metric is reduced to the Euclidian metric

ds2 = dx2 + dy2 + dz2 (11.2.2)

because the spatial terms in Eq. (11.2.1) a hundred times greater than the temporal
term. For one hundred thousand years, light has run less than 1/10 of an elementary
cell (100MPc) of the large-scale structure of the universe.

In other words, at this large scale the universe on the average will be exactly
the same even during the time, which is thousand times greater than the reasonable
lifetime of the human race. Particularly, any cosmological theories of the future
beyond this lifetime cannot ever be supported or refuted, and hence, all of them are
speculative. Within our epoch, that is, during the Homo Sapience lifetime the large-
scale structure of the universe is always one and the same—the last man on the Earth
will see the same universe the first man saw.

And so, at the large scale in the previous, current, and future epochs, the universe
can be considered flat, homogeneous, and isotropic. Within our epoch, we, mainly,
remain in the framework of the static Aristotelian and Ptolemaic universe described
by the Euclidian space. The latter space is accepted in this chapter for any epoch.

11.3 Invariant Integral of Cosmology

Let thephysicalmatter interact by thefieldpotentialϕ(x1, x2, x3)where x1, x2, and x3
are the Cartesian coordinates of the Euclidian space with the origin of the reference
frame at the point of observation. We can write the law of the energy conservation
in this system by means of the following invariant Γ − integral [5]:
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Γ j = (4πG)−1
∮
S

(
1

2
ϕ,iϕ,i n j − ϕ,i niϕ, j + 4πGΛϕn j

)
dS

(i, j = 1, 2, 3) (11.3.1)

Here, the surface integral is taken over an arbitrary closed surface S in the
Euclidean space, dS is an element of S, ni is the i th component of the outer unit
vector normal to S, Λ is the cosmological constant, and G is the gravitational con-
stant.

Vector �(Γ1, Γ2, Γ3) represents the force acting on the matter inside S, which
is equal to the work spent to move the matter inside S per init length. Particularly,
� = 0 if there are no matter inside S. The dimension of ϕ is “energy/mass.”

The first term in Eq. (11.3.1) represents the flow of the field gravitational energy
through S, the second term the work of the field gravitational intensity on S, and the
third term the flow of the Dark Energy through S.

WhenΛ = 0, Eq. (11.3.1) provides the theory/model of theNewtonian gravitation
of thematter.WhenΛ �= 0,Eq. (11.3.1) delivers themodel of the cosmic gravitational
matter, in which the term Λϕn j represents the flow of the Dark Energy.

The field of potential ϕ(x1, x2, x3) introduced by Eq. (11.3.1) is called the cosmic
gravitational field, or the CG field. It accounts for both the gravitational matter
(the ordinary or baryonic matter plus the Dark Matter) and the anti-gravitational
matter (the Dark Energy of the “vacuum” uniformly distributed in the space). The
gravitational matter can collapse and create point-like sources of the field while the
anti-gravitational matter can never collapse due to the self-repulsion.

11.4 Interaction Forces in the Cosmic Gravitational Field

Using the divergence theorem, let us convert Eq. (11.3.1) to the following shape:

Γ j = (4πG)−1
˚ (

ϕ,i i + 4πGΛ
)
ϕ, jdv (i, j = 1, 2, 3) (11.4.1)

Here, the integral is taken over the volume inside S so that dv is an elementary
volume.

Let us consider first the homogeneous and isotropic matter, every part of which
volume is self-balanced, so that in this matter the integral in Eq. (11.4.1) is equal
to zero over an arbitrary volume. From Eq. (11.4.1), it follows that the following
differential equation is valid at every point inside the volume of such a matter

ϕ,i i = −4πGΛ (11.4.2)

This is Poisson’s equation for the Newtonian potential accounting for a negative
mass uniformly distributed inside the volume under consideration so that Λ is the
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density of this anti-gravitational matter called the Dark Energy. And so, in this model
the Dark Energy is the negative mass uniformly distributed in the space.

Let us find the law of interaction of gravitational masses in this field of the Dark
Energy. Suppose a point mass M to be at point (0, 0, 0). From Eq. (11.4.2), it follows
that this mass and the Dark Energy create the following field:

ϕ = −G M

r
− 2π

3
GΛr2

(
where r2 = xi xi

)
(11.4.3)

The first term in Eq. (11.4.3) corresponds to the gravitational potential of mass M
and the second term to the potential of the Dark Energy.

Suppose mass m to be at an arbitrary point inside S. Let us shrink the closed
surface S onto this point and calculate the singular integral in Eq. (11.3.1) by means
of the Γ -integration rule. As a result, we get the following equation of the force
acting upon mass m

Γi = −mϕ,i (11.4.4)

Here, ϕ,i is the intensity of the external field at the point of the mass location.
Using Eq. (11.4.3), we find the field intensity at point (R, 0, 0) created by mass

M at point (0, 0, 0) and by the Dark Energy

ϕ′1 = G M

R2
− 4π

3
GΛR, ϕ,2 = 0, ϕ,3 = 0. (11.4.5)

From Eqs. (11.4.4) and (11.4.5), it follows that mass m at point (R, 0, 0) is acted
upon by the following field force [5]:

Γ1 = −Gm M

R2
+ 4π

3
mGΛR, Γ2 = Γ3 = 0. (11.4.6)

Similarly, we can derive that mass M at point (0, 0, 0) is acted upon by the
following field force:

Γ1 = Gm M

R2
− 4π

3
MGΛR, Γ2 = Γ3 = 0. (11.4.7)

Equations (11.4.6) and (11.4.7) provide a new law of interaction of two point
masses. The first term in this law accounts for the attraction caused by Newton’s
gravity while the second term accounts for the repulsion of the Dark Energy. The
gravity decreases when the distance between the masses increases and tends to zero
at a very large distance; the force of repulsion grows limitlessly when this distance
increases.

For any mass m, there exist a critical distance R = Rm , such that for R < Rm

the Newtonian gravity dominates, and for R > Rm , the repulsion force of the Dark
Energy dominates over the Newtonian gravity. According to Eq. (11.4.6) where M
is assumed to be the mass of the universe, we have
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Rm =
(

3M

4πΛ

)1/3

(11.4.8)

The astrophysical measurements proved that the radius of the universe at the
current epoch is greater than Rm because the repulsion of the Dark Energy currently
dominates at a very large scale. It is the cause of the accelerated expansion of the
universe, the most significant discovery of the recent past.

11.5 Gravitational Matter and the Dark Energy

The mass of the gravitational matter of the homogeneous isotropic universe inside a
sphere of radius R is equal to

M = 4π

3
ρR3 (11.5.1)

where ρ is the average density of the gravitational matter (the baryonic matter plus
the Dark Matter). Let us consider any mass m on the edge of this sphere. The field
force acting upon this mass is, evidently, given by Eq. (11.4.6).

From Eqs. (11.4.6) and (11.5.1), it follows that any mass m moves away with
some acceleration if Λ > ρ, that is, if the density of the Dark Energy is greater
than the average density of the gravitational matter. It is the fundamental property
of the expanding universe at the current epoch. Acceleration of the expansion is
determined by the value of difference Λ − ρ. Though this expansion increases the
distance between objects that are under shared gravitational influence, it does not
increase the size of these objects, e.g., galaxies.

From Eqs. (11.4.6) and (11.4.7), it follows also that, if Λ < ρ, the universe
experiences a deceleration, and if Λ = ρ+, the universe expands at a constant
velocity which corresponds to the principle of Galileo.

At the scale less than 100MPc, the gravitational matter is inhomogeneous, and
thus, under the prevailing force of gravitation, it can collapse and form Black Holes,
galaxies, quasars, pulsars, stars, planets, and various particles. At any scale, the com-
petition of the gravity versus repulsion force is characterized by the dimensionless
number Ch = M/ΛL3 where L and M are the specific linear size and gravitational
mass of the system under consideration. When Ch � 1, we can ignore the Dark
Energy, and when Ch � 1, we can neglect the Newtonian gravity.

Let us provide some figures for the current epoch assuming the cosmological
constant to be equal to Λ = 10−26 kg/m3:

The solar system: M = 2 × 1030 kg, L ∼ 1011 m, Ch ∼ 1023;
The Milky Way (our galaxy): M = 1.4 × 1042 kg, L ∼ 1021 m, Ch ∼ 105;
A supercluster of million galaxies:

M = 1048 kg, L ∼ 3 × 1024m ∼ 100Mpc, Ch ∼ 1;
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The universe: M = 1053 kg, L = (10)1/3 · 1026 m, Ch = 1.

And so, in the scale of 100MPc and greater the effect of the Dark Energy is, at
least, of the same order as that of the Newtonian gravity. In the smaller scales, the
effect of the Dark Energy can be ignored. In the space beyond the universe, the Dark
Energy dominates because number Ch may be much less than 1.

According to the recent most accurate measurements of the Planck satellite mis-
sion, the ordinary matter plus the Dark Matter make up 31.7% of the mass of the
universe, and the other 68.3% accounts for the Dark Energy. The ordinary matter
accounts only for 4.9% of the total mass. At the current epoch, the repulsion forces
can dominate at the large scale while the gravity dominates at the smaller scales [6].

The universe represents a community of the gravitational matter and the anti-
gravitational Dark Energy; for the scales less than 100MPc at the current epoch,
the universe is bound by the prevailing forces of gravitation. The Dark Energy is
uniformly distributed in the universe. For example, in the Earth there is about 0.01 g
of the Dark Energy.

11.6 The Dynamic Universe: The Evolution History

Let us study the radial motion of an arbitrary mass in the cosmic gravitational field of
the universe. The outward motion of the masses forms the expansion of the universe.
During one epoch, this dynamic expansion is very small as compared to 100MPc.
Hubble was first to measure its rate using the Doppler effect that describes the
decrease of frequency of a receding source of waves (redshift) and the increase of
frequency of an approaching source (blueshift) in the spectrum of hydrogen, helium,
and other chemical elements of the source.

By means of Eqs. (11.4.6) and (11.5.1), the radial motion equation of any probe
mass at the edge of the universe of radius R is written as follows:

d2R

dt2
= 4π

3
G R(Λ − ρ). (11.6.1)

This serves as the evolution equation of the expanding universe.
Let us accept the following assumptions of our model:

1. The universe is flat, homogenous, and isotropic at any time of its history.
2. The cosmological constant Λ is one and the same at any time.
3. The gravitational mass M of the universe is constant at any time.

Integrating Eqs. (11.5.1) and (11.6.1) under these assumptions, we come to the
following basic equation

H 2 =
(
1

R

dR

dt

)2

= 8π

3
G

(
ρ + 1

2
Λ

)
− K

c2

R2

(
ρ = 3M

4π R3

)
(11.6.2)
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Here, H is the Hubble parameter, and K is a constant.
At the current epoch, we have

t = t0, R = R0, Ṙ/R = H0. (11.6.3)

Using Eqs. (11.6.2) and (11.6.3), we get K

K c2 = R2
0

(
4π

3
GΛ + 2MG

R3
0

− H 2
0

)
. (11.6.4)

It is amazing that Eq. (11.6.2) almost coincides with the basic equation of the
modern FLRN and �CDM models derived from the general relativity based on the
wrong assumption of the curved universe (the difference is in the meaning of K).

The integration of Eq. (11.6.2) provides the following evolution of the universe
at any epoch from the birth when t = 0 to the infinite future when t → ∞

t =
R∫

0

(
4π

3
GΛR2 + 2MG

R
− K c2

)−1/2

dR (11.6.5)

The analysis of basic equations of evolution, Eqs. (11.6.1) and (11.6.2), shows
that in the life of the universe there were three different stages characterizing the
early universe, the middle-age universe, and the old-age universe.

The earliest universe had a small size R � Rm . Its rate of expansion, infinite at
the birth, was decreasing with time growing. At the earliest age, ρ � Λ so that the
density of the gravitational matter was much greater than the density of the Dark
Energy.

At the middle age, the universe was growing at the close-to-constant rate. At this
age, ρ ∼ Λ and the rate of expansion was minimal at R = Rm .

At the old age, Λ > ρ and the rate and acceleration of expansion are increasing
when time grows. We live in the beginning of this stage which is characterized by
the following exponential expansion when t → ∞

dR

dt
=

(
4π

3
GΛ

)1/2

R, R = R0exp

[√
4π

3
GΛ(t − t0)

]
(11.6.6)

Here, t = t0 and R = R0 at the current epoch.
All these predictions of the present NEOC model have been supported by the

well-known astronomical discoveries for the last 30 years. Let us notice some of
them:

a. According to Eq. (11.6.5), R → 0 and Ṙ → ∞ when t → 0, that is the universe
was born from nothing and grew at an infinite rate (the Big Bang).

b. The early universe was decelerating, and at the current epoch, it is accelerating.
This phenomenon was discovered by a large team of outstanding astronomers
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who for about 20 years have collected a tremendous amount of the supporting
evidence; three of themwere awarded the Nobel Prize (A. G. Riess, S. Perlmutter,
and B. P. Schmidt, American astrophysicists).

At the time when t → ∞, the universe will disintegrate into a great number of
independent communities running one from another by the Dark Energy but keeping
their own constituents owing to the gravity.

11.7 The Age of the Universe

Let us estimate the current age of the universe using Eq. (11.6.5). At the present
epoch, R = R0 so that we have

TU =
R0∫
0

(
4π

3
GΛR2 + 2MG

R
− K c2

)−1/2

dR (11.7.1)

Here, TU is the current age of the universe.
Let us transform Eq. (11.7.1) to the following shape:

TU = T

1∫
0

[
x2 + 2α

(
1

x
− 1

)
+ β

]−1/2

dx (11.7.2)

Here,

T =
√

3

4πGΛ
, α = ρ0

Λ
, β = 3H 2

0

4πGΛ
− 1. (11.7.3)

Parameters α and β are dimensionless. Let us call them the Poincare number and
the Hubble number to honor these great contributors into cosmology. The Poincare
number is directly proportional to the Ch number calculated for the current epoch at
the scale of the universe. And so, the current age of the universe is determined by the
Hubble and Poincare numbers and by one constant of the time dimension depending
only on GΛ.

To determine the age of the universe, let us use the results of observations collected
by the Planck satellite mission for many years. According to these data, at the current
epoch the universe contains the Dark Energy 68.3/4.9 times more than the ordinary
(baryonic) matter, and the average density of the baryonic matter is equal to ρ0 =
4.5×10−28 kg/m3. From here, it follows that the density of the Dark Energy is equal
to

Λ = 0.63 × 10−26 kg/m3. (11.7.4)
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Using Eqs. (11.7.3) and (11.7.4) and other data obtained by thePlanck and WMAP
satellite missions, we get the Poincare number and other parameters

T = 0.756 × 1018 s = 2.4 × 1010 years,

α = 31.7

68.3
= 0.464, H0 = 68.3

km

s
perMPc. (11.7.5)

From here and from Eqs. (11.7.3) and (11.7.4), we find the Hubble number

β = 1.8. (11.7.6)

Using Eqs. (11.7.2), (11.7.5) and (11.7.6), we calculate the current age of the
universe

TU = 12.26 × 109 years ∼ 12.3 billion years. (11.7.7)

According to theΛCDMmodel, the age of the universe is about 13.8 billion years.
It is striking that the ΛCDM theory based on the wrong assumption of the general
relativity about the non-flat universe could achieve the result that is so close to the
correct one!

11.8 The Neutron Universe, the Dark Matter, and Black
Holes

Let us study the early universe. From Eq. (11.6.2), it follows that

dR

dt
=

√
2MG

R
when t → 0 (11.8.1)

so that

R = (2MG)1/3
(
3

2
t

)2/3

when t → 0. (11.8.2)

Using Eq. (11.8.2), we can find the density of the early universe

ρ = 1

6πGt2
when t → 0. (11.8.3)

And so, the density of the early universe was the function of only G and t. Evi-
dently, in the early universe ρ � Λ so that in this model it consisted mostly of the
gravitational matter.
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Neutrons and protons make up nuclei of atoms of all elements. They have mass
about 1.67× 10−27 kg and radius about 10−15 m. Hence, their density ρB is equal to

ρB = 4 × 1017 kg/m3. (11.8.4)

From Eq. (11.8.3), it follows that in about 45μs after the universe was born, it
had the density which was about the density of atom nuclei.

It is reasonable to assume that at sometimes around t ∼ 45μs the universe
represented a dense gluon “soup” of down quarks and of a double amount of up
quarks, and it was covered by a dense “atmosphere” of photons and neutrinos trapped
by the gravitation forces of the universe. It was a gigantic Black Hole we call the
neutron universe. Other elementary particles like electrons, positrons, muons, and
others, both bosons and fermions, were also trapped by the gravity, although being
either unstable or insignificant in amounts. Because the universe is electro-neutral in
average, proton charges were annihilated by electrons so that the ratio of the number
of down quarks and up quarks was typical for neutrons.

If the gravitational mass of the universe was about 1054 kg at any time, then
according to Eqs. (11.8.2) and (11.8.4), the radius of the neutron universe at that
time was equal to

RN = 3.8 × 107 km (11.8.5)

It is about the distance between the Sun and Mercury, a very small part of the
solar system.

All gravitating particles near a big-mass object, including photons and neutrinos,
are trapped by the gravity of the big object, if

2G M ≥ c2R (11.8.6)

Here, M and R are the mass and radius of the big object like a neutron star or the
neutron universe.

Evidently, the gravitating object meeting the condition equation, Eq. (11.8.6), is a
Black Hole. In terms of the density ρB of the Black Hole, Eq. (11.8.6) can be written
as

8πGρBR2 ≥ 3c2 (11.8.7)

For the neutron universe, the condition equation, Eq. (11.8.6), is certainly satisfied
so that all photons and neutrinos were trapped in the “atmosphere” of the earliest
universe; it was a gigantic Black Hole.

The gravitational stresses σik inside a Black Hole or a dead neutron star are
distributed as follows:

σik =
[

p + 2π

3
ρ2
BG

(
R2 − r2

)]
δik (11.8.8)
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Here, r is the distance from the center of a spherical Black Hole or dead neutron
star, p is the pressure of the neutrino–photon atmosphere (p ∼ 0 for dead neutron
stars), and δik is the Kronecker delta function.

Equation (11.8.8) is valid both for heavy ideal fluids and for heavy elastic solids
which Poisson’s ratio is equal to 0.5 due to the big pressure.

According to Eq. (11.8.7), the neutron stars that are less in size than R∗ are losing
energy and fast dying

R∗ = c

2

√
3

2πGρB
= 20 km (11.8.9)

Hence, the neutron stars of radius R > 20 km turn out to be stable Black Holes
keeping all their energy.

From Eq. (11.8.6), it follows that the critical mass of stable Black Holes is equal
to

M∗ = 1.34 × 1031 kg = 6.7 M� (11.8.10)

Here, M� is the mass of the Sun.
And so, the mass 6.7 M� is the maximum value of the mass of neutron stars

and the minimum value of the mass of stable Black Holes. It is useful to remember
another important critical value, the Chandrasekhar limit 1.4 M� which separates
the stars of lesser mass, turning into dead white dwarfs in the long run, from the
neutron stars of higher mass energy that originally rotate extremely fast and create
hot rotating clouds of the gravitational matter but fast lose energy and die [7].

As a reminder, common stars usually go through a long evolution of more than 10
billion years synthesizing hydrogen from quarks, burning hydrogen into helium and
then, in Red Giant Stars, helium into carbon, oxygen and heavier elements. Finally,
they explode as supernovae which emit a tremendous amount of photons, neutrinos,
and electromagnetic radiation in pulsars. After that, they get cool, rotate slower, and
die fast [8].

Dead neutron stars which do not revolve cannot be easily detected. However,
despite its size may be about that of a big meteorite, a neutron star will disturb the
solar system if moves within its reach. If this happens, the humankind will inevitably
perish. The smallest dead neutron stars are most probable “candidates” to meet with
the solar system.

TheBlackHoleswhichmass is greater than 6.7 M� aremuchmore powerful. They
carry a tremendous energy, and they keep trapped any photons, neutrinos, and other
particles and adsorb any external emission received. It is hard to detect them. They
can be discovered only by the nebulae of clouds of the revolving gravitational matter
in their gravitational field. Gigantic Black Holes can have the mass of many million
M� and form galaxies like the Milky Way. Some hope for the direct monitoring of
the Black Holes provides the so far undetected Hawking effect that follows from the
quantum mechanics [9].
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At the large cosmological scale, dead neutron stars and Black Holes form the
Dark Matter that reveals itself only by the gravitational effect. It is mostly from this
dangerous matter that our gravitational universe is made. The ordinary matter which
can be, in principle, observed makes up only 4.9% of the content of the universe.

11.9 The Planck Epoch and the Big Bang

The neutron stars and Black Holes are the densest cosmological objects of nature.
And so, we can only guess about the state of the universe at times less than 45μs after
it was born. More than a hundred years ago, Max Planck (1858–1947), a German
physicist and the reluctant originator of quantum mechanics, offered a mesmerizing
guess about some absolute units of time and space.

The point is that the only dimensionless combination of time t, the gravitational
constant G, the speed of light c, and the Planck constant h is the following one:

t2c5

hG
(11.9.1)

From here, the specific time tP and the specific length lP that can be called the
Planck time and length are equal to [10]

tP =
√

hG

c5
= 1.3 × 10−43 s, lP = ctP = 4 × 10−35 m (11.9.2)

These values are of great interest because they are made from the fundamental
constants characterizing the main physical phenomena of nature, namely the gravi-
tation, the relativity, and the quantum property of the micro-world. If these constants
are absolute, then the Planck time and length may be the quanta of the space–time
in the future Unified Theory.

According to Eq. (11.8.2), we have R = 3 × 10−14 m when t = tP (the Planck
epoch). And so, at that time of the Big Bang the pro-universe was a little bit greater
in size than the nucleus of the helium atom at our epoch.

As seen, qualitatively the NEOC approach supports all substantial points of the
Big Bang theory, the FLRW model, and ΛCDM model which are based on the
general relativity of a mystically curved universe, while the current theory uses only
well-measured data within the framework of the classical mechanics of the common
flat space. However, both fail to explain the nature of the Big Bang.
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11.10 Revolution of the Universe and the Dark Energy

In planetary systems of stars, as well as in galaxies, clusters, and super-clusters, the
gravitating masses revolve around a center of gravity of the corresponding system.
As “a birth defect,” this revolution is caused by an asymmetry of an original system
arisen, for example, when a cloud of dust and gas collapsed. Due to the law of the
angularmomentum conservation, the denser collapsed system has the greater angular
velocity of its rotation. And so, the greatest angular velocities are characteristic for
neutron stars and Black Holes, the densest objects of nature.

The axis of rotation always goes through the center of gravity of the original cloud,
and the gravitation force acting upon each body is directed toward this center. The
revolution creates the centrifugal force acting upon each revolving body. However,
this force can balance only the component of the gravity force which is perpendicular
to the axis of rotation. The component of the gravity force directed along the axis
of rotation is unbalanced; this component moves all revolving bodies onto one and
same plane which is perpendicular to the axis of rotation and goes through the center
of gravity.

And so, as a result, all revolving systems of gravitating bodies become flat or
close to flat depending on the age of the system. The solar system is practically flat,
and all planets lie in one and same plane. The fractal dimension of the Milky Way is
about 2.2 so that this galaxy is an area-like fractal close to a pancake by its general
shape. The decrease of the angular momentum of a revolving system can occur only
due to an emission of energy from the system.

This general property of gravitating systems makes us suggest that the universe as
well revolves in the space around a certain axis going through the center of gravity of
the universe. This hypothesis is especially alluring because it allows us to give a very
simple explanation of the Dark Energy, the most obscure and even mystic subject of
cosmology at the present time.

Indeed, in the revolving universe every mass experiences the centrifugal force
which is equal to the product of the mass, the square of its angular velocity, and its
distance to the axis of rotation. Let us assume that this centrifugal force of the revolv-
ing universe is the repulsion force of the Dark Energy acting upon any gravitating
mass.

From here, using Eqs. (11.4.6) and (11.4.7), we get

ω2 = 4π

3
GΛ (11.10.1)

Here, ω is the angular velocity of the universe. It should be emphasized that it
is an average quantity for all gravitating objects of the universe; the values of ω for
particular objects can differ very much.

Substituting Λ in Eq. (11.10.1) by Eq. (11.7.4), we have

ω = 1.33 × 10−18 s−1 (11.10.2)
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This small angular velocity of the universe cannot be ever detected by human
beings. At such an angular velocity, for 12.3 billion years the universe would turn
only by angle 30°.

The same and even more difficult problem is to detect the center of gravity of
the universe and the axis of its rotation. It should be mentioned that the notions
of the gravity center and rotation axis of the universe contradict to the Copernican
principle accepted in the general relativity. These aremost essential objections against
the present neoclassical theory. However, they do not matter, since in the NEOC
approach all observers within the 100MPc distance around the Earth and about one
million years apart are equivalent because they would observe one and same picture
of the large-scale universe.

And so, it is, probably, impossible to prove or disprove the current simple approach
to the Dark Energy using direct measurements of the angular velocity or angular
displacement of the universe. Still, this NEOC outcome has some evident merits
because the man used to prefer understandable things to mystic ones—this is our life
experience.

The hypothesis of the revolving universe leads us as well to the conclusion that the
fractal dimension of the universe should be less than 3, and in the long run, it should
approach to 2 similar to clusters, galaxies, planetary systems, and any revolving
systems of gravitating masses.

11.11 Modified Evolution Equations of the Universe

The revolution can drastically change the dynamics of the evolution of the expanding
universe, particularly, because it makes the cosmological constant vary with time.
Let us derive the basic equations of the revolving and expanding universe. Because
the symmetric expansion is unstable, any asymmetry in the process of the expansion
of the universe from the Big Bang could produce a moment of force and revolution.

The moment of force causing the revolution is equal to the product of an eccentric
force and its distance from the axis of rotation. From the dimensional analysis, it
follows that the perturbation force is directly proportional to the gravity of eccentric
masses, and that their distance from the axis is proportional to the radius of the
universe. Based on these assumptions, the equation of the rotational dynamics of the
universe can be written as follows:

d

dt

(
ci M R2ω

) = G Mme

R2
· ceR (11.11.1)

Here, M, R, and ω are the mass, maximum radius, and average angular velocity
of the universe; me is some eccentric mass; and ci and ce are some dimensionless
coefficients depending on the shape of the universe and on the position of eccentric
masses.
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In particular, the value of ci is equal to 0.4 for solid spheres, 0.2 for thin circular
plates, and 0.2 + 0.2(b/R)2 for oblate solid spheroids of the maximum thickness
2b(0 ≤ b ≤ R). The latter two are some possible shapes the universe can get due to
the revolution.

The left-hand part of Eq. (11.11.1) represents the rate of the angular momentum,
and the right-hand part the moment of eccentric forces. Let us rewrite Eq. (11.11.1)
as follows:

r
d

dτ

(
ar2

) = PE where a = a(τ ) (11.11.2)

Here, r, τ, a, and PE are the following dimensionless parameters

r = R

R∗
, τ = t

T∗
, a = ωT∗, PE = GmeceT 2∗

ci R3∗
, (11.11.3)

where R∗ and T∗ are the radius and age of the expanding and revolving universe at
some specific epoch.

Parameter PE called the eccentricity parameter characterizes the dynamics of the
revolving universe. Its value is determined by some unknown disturbances of the
symmetric distribution of masses in the early universe at the time of the Big Bang,
with this “birth defect” asymmetry being remained forever. In the current NEOC
model of the expanding and revolving universe, the value of PE is an empirical
constant like the gravitational constant.

Based on Eqs. (11.5.1), (11.10.1), and (11.11.3), the main equation, Eq. (11.6.1),
of the universe expansion takes the following shape:

d2r

dτ 2
= ra2 − G∗

r2
(11.11.4)

Here,G∗ is the dimensionless gravitational number of the universe at some specific
epoch. It is equal to

G∗ = G MT 2∗
R3∗

= 4π

3
ρ∗GT 2

∗ (11.11.5)

Here, ρ∗ is the average density of the universe at the specific epoch.
The equation system, Eqs. (11.11.2) and (11.11.4), determines the evolution of the

revolving and expanding universe in this NEOC model. The solution of this system
for 0 < τ < ∞ should meet the following boundary conditions:

r = 0, a → ∞ when τ = 0; (11.11.6)

r = 1, when τ = 1. (11.11.7)
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It is easy to find the following singular solution to Eqs. (11.11.2) and (11.11.4)
satisfying the boundary conditions, Eqs. (11.11.6) and (11.11.7)

r = τ 2/3, a = 3PEτ
−1, PE = 1

3

√
G∗ − 2

9
(11.11.8)

From here, it follows that the Hubble parameter corresponding to this singular
solution is equal to

H = 2

3t
. (11.11.9)

According to Eqs. (11.11.5), (11.11.8) and (11.11.9), this singular solution is valid
when G∗ > 2/9 so that the density of the universe at the specific epoch is greater
than a certain critical value ρc

ρ∗ > ρc = 3H 2∗
8πG

= 1

6πGT 2∗
. (11.11.10)

It is interesting that this critical density of the revolving and expanding universe
coincides with the density of the early universe in the model of the expanding, but
not revolving universe at this specific epoch; see Eq. (11.8.3).

11.12 Orbital Velocities of Stars in Spiral Galaxies

The average orbital velocity V of a planet of massm in the solar system is determined
by the balance equation of the inertia force mV 2/R and the force Gm M/R2 of the
attraction to the Sun of mass M where R is the average distance between the planet
and the Sun. And so, V = (G M/R)1/2 so that the orbital velocity decreases and
tends to zero when this distance increases. Since Ch � 1 for the Milky Way and all
other galaxies, the orbital velocity of stars in galaxies seems to be described by the
same law. However, based on the astrophysical data, this velocity practically does
not depend on the distance between a star and the galaxy center, and it is usually
equal to about 220−260 km/s.

This paradox evoked a number of theories. The modified Newton’s dynamics
(MOND) theory rejects Newton’s Law of inertia and replaces it by another law,
according to which the inertia force equals ξ

(
mV 2/R

)2
where ξ is amass coefficient.

From here and the balance equation, it follows that the orbital velocity does not
depend on the distance. According to another theory, this paradox is caused by the
effect of the Dark Energy; however, it is not true because Ch � 1 in this case.

Meanwhile, the flat, spiral structure of theMilkyWay and other galaxies allows us
to provide a simple explanation and prediction of the paradox within the framework
of the classical mechanics and Newton’s Law of gravity. Indeed, it is reasonable to
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assume that the gravitational matter of the Milky Way is uniformly distributed along
some logarithmic spirals with the common pole at the center of the disk of the Milky
Way. These spirals are well-documented.

The length of an arc of a logarithmic spiral is equal to (R2 − R1)/cosβ where β

is the spiral constant equal to the angle between the radius vector of a point on the
spiral and the tangent to the spiral at the point, and R2 and R1 is the distance between
the pole and the ends of the arc. When R2 � R1, the length of the arc is directly
proportional to the distance R = R2 between this point and the center of the galactic
disk which is the pole of the logarithmic spirals.

And so, mass M of the galactic disk inside radius R is directly proportional to R
for any number of spirals

M = k R (11.12.1)

Here, k is a galactic constant.
For the Milky Way, M = 1.4 × 1042 kg when R ∼ 1.5 × 1021 m so that

k ≈ 1021 kg/m (11.12.2)

From Eq. (11.12.1), it follows that the gravitational force attracting a star of mass
m to the center of the galaxy is equal to kmG/R. This force is balanced by the
centrifugal force of inertia of the star which is equal to mV 2/R. From here, we get
the orbital velocity of stars in spiral galaxies [5]

V = √
kG (11.12.3)

According to Eqs. (11.12.2) and (11.12.3), the average orbital velocity of stars in

the Milky Way is equal to about 250
km

s
. This result of calculation is confirmed by

astrophysical data.
From Eq. (11.12.1), it follows that the distribution of gravitating masses in spiral

galaxies obeys the following law [5]:

ρ = k

2π R
(11.12.4)

Here, ρ is the gravitating mass per unit area of the galactic disk, and R is the
distance from the galactic center.

TheNEOC law expressed by Eq. (11.12.3) is, evidently, valid also for any galaxies
which gravitational matter, including the Dark Matter, is distributed in the galactic
disk similar to Eq. (11.12.4). And so, the present NEOC approach to this problem dis-
cards the viewpoint of Rubin (1928–2015), an American astronomer, who explained
this anomaly by the effect of the Dark Matter [11].
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11.13 The Fractal Universe

As it was first shown by Mandelbrot (1924–2010), a French scientist, all geometrical
objects of nature including the universe represent some fractals which length, area,
and volume depend on the scale of measurement. For example, the length of the
coastline of the continents on the Earth substantially depends onwhether wemeasure
it using maps in the scale of 1 mile, or 100 miles (per inch of a map), or in the scale
of 1 ft by a walker.

The results of the measurements of the coastline length can be approximated as
follows [12]:

L

L0
=

(




0

)1−df

, or, log
L

L0
= (1 − df) log





0
. (11.13.1)

Here, L is the length in the scale of 
; L0 is the length in the scale of 
0; and df
is the fractal dimension. Fractals which are characterized by the power-law function
of Eq. (11.13.1) are called the power-law fractals.

For the line-like fractals like a coast line, the fractal dimension varies in the range

1 ≤ df ≤ 1 + θ where 0 ≤ θ < 1. (11.13.2)

The greater is the fractal dimension, the longer is the length L. For example, the
fractal dimension of the Australian coast equals df = 1.14 while that of the Norway
coast equals df = 1.49. If θ = 0, then df = 1; this is the common metric dimension
of length that does not depend on the scale of measurement. Fractal dimension is a
measure of the geometrical complexity of a system.

Let us apply this approach to the universe which is surely themost complex fractal
object. Suppose we can measure mass M of the universe using some astrophysical
devices of various precision allowing us to study the universe within some device-
dependent radius R which is the scale of measurement in this case. Evidently, the
result of measurement depends on this scale.

As it was shown in the previous section, any rotating system of gravitating masses
acquires a shape close to a disk which metric dimension equals 2. Hence, in the long
run the fractal dimension of the universe should be close to 2. Based on this assump-
tion, let us interpolate the measurements of the fractal universe by the following
power-law function

M

M0
=

(
R

R0

)2−df

where df = 2 + δ (δ � 1) (11.13.3)

Here,M is themass of the universe in the scale ofR; M0 is themass of the universe
in the scale of R0; and df is the fractal dimension of the universe.

And so, according to Eq. (11.13.3), the universe has the shape of a thin circular
disk of radiusR and thickness h, which fractal dimension is close to 2. Although some
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astrophysical observations support this assumption, the results are still inconclusive
and contradictory because the methods of measurement differ very much. Therefore,
Eq. (11.13.3) can only serve as a hypothesis.

Since M = πρh R2 in metric dimensions, from here and from Eq. (11.13.3), we
can derive

h = ζ

πρ
R−df where ζ = M0

R2−df
0

. (11.13.4)

This equation allows one to estimate the thickness of the universe using the empir-
ical constant ζ and the fractal dimension of the universe.

11.14 Gravitons and the Unified Theory

Gravitons and gravitational waves are still subject to even more speculations because
of their very low intensity. Wemention here only one hypothesis, according to which
gravitons are the gravitational waves of the maximum possible length λ which has
the value of the order of the radius of the universe [5]

λ = 1026 m, ν = c/λ = 3 × 10−18 s−1, mg = hν/c2 = 10−68 kg (11.14.1)

Here, ν is the wave frequency, and mg is the mass energy of gravitons.
According to Eq. (11.14.1), this hypothetical graviton is the smallest elementary

particle of nature. No physical particle can be less. Its frequency corresponds to the
period of the wave of the order of ten billion years which is about the age of the
universe. From this hypothesis, it follows that our universe consists of about 10120

gravitons.
Each “elementary” particle represents a cluster of a huge number of gravitons. In

particular, we get the following figures:

Neutrino mass equals 0.32 eV/c2 = 0.58 × 10−36 kg = 0.26 × 1032 mg;
Up quark mass equals 2.3MeV/c2 = 4.1 × 10−30 kg = 7 × 1037 mg;
Down quark mass equals 4.8MeV/c2 = 8.6 × 10−30 kg = 2 × 1038 mg;
Electron and positron mass equals 9.1 × 10−31 kg = 2 × 1038 mg; and
Gamma photon effective mass equals 1.8 × 10−30 kg for 1MeV photons.

And so, these gravitons as the smallest elementary particles can pretend to the
role of building blocks in the future Unified Theory.

However, this role imposes some strict constrains on the topology of the develop-
ing universe because, according to Eq. (11.14.1), the value of the maximum radius of
the universe becomes an absolute constant like the speed of light or the gravitational
constant. It means that in the earliest stage, the universe represented a rotating whip-
like set of gravitating masses of the fractal dimension close to 1 which length was
always equal to one and same constant. In the course of time, the shape of the universe
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gradually changed its geometry from an almost 1D whip to the current almost 2D
disk of the maximum radius that is equal to the same constant. To a certain extent,
this hypothesis is similar to the Aristotelian concept of “solid sky.”

The Planck dimensional analysis that led him to the Planck length and time can
be supplemented by the Planck mass, force, energy, stress, momentum, and so on.
For example, in terms of the absolute constants, we get:

mp = √
ch/G, Fp = c4/G, Ep = c2mp,

σp = c7/hG2, Ip = c
√
ch/G (11.14.2)

Here, m p, Fp, E p, σp and Ip are the Planck mass, force, energy, stress, and
momentum, respectively. And any physical quantity which depends on time, length
and mass can be represented by a similar equation.

From Eq. (11.14.2), we find:

mp = 5.4 × 10−16 kg, Fp = 1.2 × 1044 N,

Ep = 48.6 J, Ip = 16.3N s
(11.14.3)

And so, the Planck energy and momentum have some earthly values as distinct
from time, length, mass, and force.

If we assume, following the Planck way of reasoning, that the cosmological con-
stant has to be determined by the absolute constants, then we come to the following
result

Λp = c5

hG2
= 0.82 × 1096 kg/m3. (11.14.4)

This value of the Planck cosmological constant 10120 times greater than its value
according to all astrophysical data! From this paradox, it may follow that the cos-
mological constant can also be an absolute constant independent of other absolute
constants, or there exist some new undiscovered independent variables beyond mass,
length, and time. The universe and nature present us many unresolved puzzles that
are far beyond the human imagination.

11.15 Spheroidal Universe

According to Eqs. (11.10.1) and (11.11.2), the angular velocity and the cosmological
constant of the universe varied with time. It is reasonable to assume that due to the
rotation the universe should, at least at the initial stage of a very dense state, have the
shape of an oblate or prolate spheroid, with the axis of rotation being the main axis
of the spheroid. For the expanding and revolving universe, the evolution equation,
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Eq. (11.11.4), must be modified in order to take into account the rotation and the
spheroidal shape of the universe.

The initial stage of the universe history. Suppose that at the initial stage of its
history, just after the Big Bang, the homogeneous universe revolving around axis x3
is inside the following spheroid

x2
1 + x2

2

R2
+ x2

3

λ2R2
= 1 (11.15.1)

Here, λ is the eccentricity parameter of the spheroid expressed as follows:

for the oblate spheroid λ =
√
1 − e2 (0 ≤ e ≤ 1, λ ≤ 1), (11.15.2)

for the prolate spheroid λ = 1/
√
1 − κ2 (0 ≤ κ ≤ 1, λ ≥ 1). (11.15.3)

The mass of this spheroid is equal to

M = 4π

3
λρR3 (11.15.4)

The components X1, X2 and X3 of the gravitation force upon a unit point mass on
the surface of this spheroid are equal to [13]:

For the oblate spheroid:

Xi = −2πρGxi

√
1 − e2

1

e3

(
−

√
1 − e2 + arcsine

e

)
(i = 1, 2) (11.15.5)

X3 = −4πρGx3
1

e3

[
e −

√
1 − e2 arctan

(
e√

1 − e2

)]
(11.15.6)

For the prolate spheroid:

Xi = −2πρGxi
1

κ3

[
κ − 1

2

(
1 − κ2

)
ln
1 + κ

1 − κ

]
(i = 1, 2) (11.15.7)

X3 = −2πρGx3
1 − κ2

κ3

(
−2κ + ln

1 + κ

1 − κ

)
(11.15.8)

For the sphere, Eqs. (11.15.5)–(11.15.8) provide

Xi = 4π

3
ρGxi (i = 1, 2, 3) (11.15.9)

From Eqs. (11.15.5) to (11.15.8), we can also derive the following useful asymp-
totes.
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For the thin disk of radius R, when e → 1:

X1 = X2 = 0, X3 = −3
G M

R2
(x1 = x2, x3 → 0) (11.15.10)

X1 = −3π

4

G M

R2
, X2 = X3 = 0 (x1 = R, x2 = x3 = 0) (11.15.11)

For the equivalent cylinder of radius R and length L � R, when κ → 1:

X1 = X2 = 0, X3 = 32

9

G M

L2
ln(1 − κ) (11.15.12)

(
x1 = x2 = 0, x3 = L = 4R

3
√
1 − κ2

)
;

X1 = −2πρ G R, X2 = X3 = 0(
x1 = R = 3

4
L
√
1 − κ2, x2 = x3 = 0

)
. (11.15.13)

According to Eqs. (11.15.5) and (11.15.7), the gravitational force upon a unit
probe mass at the edge of the universe when x3 = 0, x2

1 + x2
2 = R2 is equal to

F = −η
G M

R2
, (11.15.14)

where

η = 3

2e3

(
−e

√
1 − e2 + arcsine

)
for the oblate spheroid, (11.15.15)

η = 3

2

√
1 − κ2

κ3

[
κ − 1

2

(
1 − κ2

)
ln
1 + κ

1 − κ

]
for the prolate spheroid. (11.15.16)

Coefficient η describes the effect of eccentricity of the universe. For the oblate
spheroid, it monotonously grows from η = 1when e = 0 (sphere) to η = 3π/4when
e = 1 (thin flattened spheroid). For the prolate spheroid, it monotonously decreases
from η = 1 when κ = 0 (sphere) to η = 3R/L for the spheroid length L � R when
κ → 1. For amass on the edge of the oblate universe, this effect monotonously grows
when eccentricity e increases so that the gravity of the thin disk is 3π/4 ≈ 2.35 times
greater than the gravity of the sphere of the same mass and radius. The gravitation
force upon the unit probe mass at x1 = R, x2 = x3 = 0 on the surface of a very
long prolate spheroid of mass M is equal to 3G M/(RL) where L is the length of the
spheroid.

Let us place a probe mass at point x1 = x2 = 0, x3 = λR on the axis of rotation
at the edge of the universe. Because the centrifugal force is zero at this point, due to
Eqs. (11.15.1), (11.15.6), (11.15.8), and (11.15.9), the equilibrium equation of the
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probe mass takes the following shape

d2

dt2
(λR) = −ζ

MG

R2
, (11.15.17)

where

ζ = 3

e3

[
e −

√
1 − e2 arctan

(
e√

1 − e2

)]
for the oblate spheroid, (11.15.18)

ζ = 3

2

1 − κ2

κ3

(
−2κ + ln

1 + κ

1 − κ

)
for the prolate spheroid. (11.15.19)

For the oblate spheroid, coefficient ζ monotonously grows from ζ = 1 when
e = 0 (sphere) to ζ = 3 when e → 1 (thin spheroidal disk).

For the prolate spheroid, coefficient ζ monotonously decreases from ζ = 1 when
κ = 0 (sphere) to 3λ−2lnλ → 0 when λ → ∞ (κ → 1) for a very long spheroid.

For the probemass at x3 = 0, x2
1 +x2

2 = R2, due to Eq. (11.15.14), the equilibrium
equation has the following shape:

d2R

dt2
= a2R − η

MG

R2
(11.15.20)

Here, η is defined by Eqs. (11.15.15) and (11.15.16).
The equation system, Eqs. (11.11.2), (11.11.4) and (11.15.15) to (11.15.20),

describes the evolution of the expanding and revolving universe in time, with R(t),
a(t) and e(t) or κ(t) characterizing the change of the angular velocity, size, and
shape of the universe in terms of time at the initial stage of its development.

In the current model, the initial stage means that 0 < t < T∗ and 0 < R < R∗
where t = 0, R = 0 corresponds to the Big Bang, and t = T∗, R = R∗ corresponds
to a specific epoch that characterizes the transition of the growth of the universe from
the initial stage to the next stage. The values of T∗ and R∗ should be found using the
conditions of the smooth transition.

The final stage is characterized by one evolution equation, Eq. (11.15.20), where
a = ω = const is determined by Eq. (11.10.1) and coefficient η has to be found from
the smooth transition conditions that can be written as follows:

when t = T∗ : a = ω, R = R∗, [e] = 0,
[
Ṙ
] = 0 (11.15.21)

The last two equations require the continuity of the expansion rate and shape of
the universe at the transition epoch.

Let us study the initial stage controlled by the system of the following three
equations:
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d2R

dt2
= a2R − η

MG

R2
,

d2

dt2
(λR) = −ζ

MG

R2
, R

d

dt

(
a R2

) = R3∗
T 2∗

PE (11.15.22)

Here, coefficient λ is a function of e or κ given by Eqs. (11.15.2) or (11.15.3).
The solution of this equation system is given by the following theorem:

Theorem 1 The exact solution of the equation system, Eq. (11.15.22), satisfying the
initial boundary value conditions R → 0, a → ∞ when t → 0, is given by the
following functions

R = μ(p)(MG)1/3t2/3, a = δ(p)t−1, λ = λ(p) (t ≤ T∗) (11.15.23)

where functions μ(p), δ(p) and λ(p) are to be found, and

p = MGT 2∗
PER3∗

. (11.15.24)

Proof According to Eq. (11.15.22) and to the initial boundary value conditions, the
problem-solving functions R, a and λ can depend only on t(s), MG

(
m3/s2

)
, and

PER3∗/T 2∗
(
m3/s2

)
. From here, based on the simple analysis of dimensions, it follows

that the solution of the equation system,Eq. (11.15.22), satisfying the initial boundary
value conditions can be written in the only shape of Eqs. (11.15.23) and (11.15.24).
The theorem is proven.

According to Eq. (11.15.23), the universe occasionally shaped as an ellipsoid at
the Big Bang retains its eccentricity, at least, at an initial stage of its development.

Substituting R, a and λ in Eq. (11.15.22) by the corresponding functions in
Eq. (11.15.23) provides the following three algebraic equations:

−2

9
μ(p) = μ(p)δ2(p) − ημ−2(p) = −ζ

λ
μ−2(p), (11.15.25)

pδ(p)μ3(p) = 3. (11.15.26)

Also, the first two smooth condition equations in Eq. (11.15.21) are met, if

R∗ = μ(p)(MG)1/3T 2/3
∗ , δ(p) = ωT∗. (11.15.27)

Then, other two smooth condition equations in Eq. (11.15.21) are satisfied auto-
matically.

Five algebraic equations, Eqs. (11.15.25)–(11.15.27), serve to determine five
unknown functions p, μ, δ, R∗ and T∗.

Let us transform three equations, Eqs. (11.15.25) and (11.15.26), to the following
ones

δ(p) = 2λ

3pζ
, μ3(p) = 9ζ

2λ
, p2 = 2λ2

ζ [ηλ − ζ ]
. (11.15.28)
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Using Eq. (11.15.27) and the first equation in Eq. (11.15.28), let us find R∗ and T∗
in terms of p and λ

R3
∗ = 2MGλ

ω2 p2ζ
, T∗ = 2λ

3ωpζ
. (11.15.29)

gravitational force upon a unit
Substituting R∗ and T∗ in Eq. (11.15.24) by Eq. (11.15.29) provides

p = 2λ

9PEζ
. (11.15.30)

Now, using Eq. (11.15.30) and the last equation in Eq. (11.15.28), we find the
characteristic equation which determines the eccentricity of the universe in terms of
the original “birth defect” coefficient PE

40.5P2
Eζ = ηλ − ζ. (11.15.31)

Let us analyzeEqs. (11.15.2) to (11.15.3), (11.15.15) to (11.15.16), and (11.15.18)
to (11.15.19) in terms of e or κ . Evidently, for the oblate spheroid we have λ < 1
and ζ > η so that the characteristic equation, Eq. (11.15.31), cannot be met. For the
prolate spheroid, we have λ > 1 and η > ζ so that Eq. (11.15.31) can be satisfied,
and we come to the following theorem.

Theorem 2 The universe has the shape of the prolate spheroid which eccentricity κ

is uniquely determined in terms of the “birth defect” coefficient PE by the following
characteristic equation:

P2
E = 2

81

[
λ(κ)

η(κ)

ζ (κ)
− 1

]
(0 ≤ κ ≤ 1) (11.15.32)

Here, functions λ(κ), η(κ) and ζ (κ) are given by Eqs. (11.15.3), (11.15.16) and
(11.15.19).

Function C(κ) given by the following equation

C(κ) = λ(κ)
η(κ)

ζ (κ)
− 1 (11.15.33)

monotonously grows when κ increases, from C = 0 when κ = 0 (sphere) to infinity
when κ → 1 (cylinder) so that the “birth defect” coefficient equals zero for the
spherical, “defectless” universe. And so, one and only one value of eccentricity κ

corresponds to any value of parameter PE . Theorem 2 is proven. At the initial stage
of its development, the universe in this model had the shape of a prolate spheroid
with eccentricity κ(PE) defined by Eqs. (11.15.32) and (11.15.33).
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11.16 The Super-Photon Hypothesis

The Big Bang theory and the NEOC cosmology cannot answer the question of the
origin of the universe because these theories are phenomenological. Most advan-
tageous and alluring is the idea that the current universe was born from a certain
primordial elementary particle. Let us analyze this idea.

From the position of the generally recognized Standard Model of the modern
physics, everything is built from elementary particles, the “zoo” of which consists
of 61 “species” including quarks, neutrinos, photons, electrons, gluons, muons, and
others, plus their antiparticles, the Higgs boson, and the hypothetical graviton. Every
elementary particle is characterized by its mass, charge, spin, and by some other
properties of the second order. In principle, every particle can be split into some
other elementary particles in a fission process being controlled by the conservation
laws of energy, momentum, and angular momentum.

Ofmost interest are stable elementary particleswhich lifetime is infinite. These are
photon, gluon, neutrino, electron, and some quarks. Mass and charge are very elusive
properties, being easily converted into energy. Neutrino has been recently proved to
have mass 0.32± 0.08 eV/c2 which is the least among all particles with some mass.
Therefore, photons and gluons that the only ones that have zero masses can be the
first in the row to pretend to the role of the primordial elementary particle. However,
gluons “glue” massive quarks and hence can be omitted from this consideration.

And so, it is reasonable to suggest that everything came from a primordial photon
we will call the super-photon. The super-photon had zero mass, zero charge, and the
spin equal to +1 or −1, if the current universe rotates. If the current universe does
not rotate, a pair of the super-photons of different spin could be the original universe.

Based on the energy conservation law, the following equation is valid

E2 = m2c4 + p2c2 (11.16.1)

Here, E, m and p are the total energy, mass, and momentum of any elementary
particle, and c is the speed of light in vacuum.

For the zero mass super-photon, we have

p = E

c
, E = hν, λ = c

ν
(11.16.2)

Here, λ and ν are the wavelength and frequency of the super-photon, and h is
Planck’s constant equal to 6.6 × 10−34 J s.

Let us estimate the total energy of the universe at the Big Bang including only
the ordinary matter and the Dark Matter. We assume that the total energy is equal to
the kinetic energy plus the rest energy what is strictly right only for velocities much
less than the speed of light. The rest energy of the universe is equal to Mc2 where M
is the gravitational mass of the universe (the ordinary and Dark Matter). The kinetic
energy at the Big Bang in the NEOC cosmology depends only on M, MG, and c.
Hence, it is equal to ζ Mc2 where ζ is a number which can be estimated using the
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assumption that at the Big Bang, the velocity v(r) varied linearly with radius and
achieved the speed of light at the edge of the universe. (As a reminder, in the NEOC
model the velocity of matter inside the universe was out of consideration.) Then, we
get

R∫
0

0.5ρv2(r)dV = 2πc2
R∫

0

(r/R)2r2dr = 0.3Mc2 (11.16.3)

Thus, the total energy of the universe at the Big Bang was equal to 1.3 Mc2 in this
approximation assuming that heat energy of the universe is much less than its mass
energy. This energy should be the same at any time in the history of the universe, if
there have been no losses of energy as we assume.

According to the current knowledge, the mass of the ordinary matter of the uni-
verse is equal to about 1053 kg so that based on the last data of the Planck mission
the total mass of the gravitational matter of the universe including the Dark Matter is
31.7/4.9 times greater, that is equal to M = 2×1054 kg. Fromhere and Eq. (11.16.3),
it follows that the primordial super-photon had the following energy, frequency, and
wavelength

E = hν = 1.3Mc2 = 2.3 × 1071 J,

ν = 1.3Mc2

h
= 3.5 × 10104

1

s
,

λ = c

ν
= 1.4 × 10−96 m.

The following possible chain of physical transformations of the super-photon
leading to the current universe might go through myriad scenarios which all could
well comply with modern physical knowledge.
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